

Advancing Industrial Systems (Of Systems) Engineering: Leveraging Model Based Systems Engineering (MBSE) with OMG Standards

OMG Europe Information Day 2025

Guillaume BELLONCLE CATIA MBSE Strategic Engagements Director gxe@3ds.com

Advancing Industrial Systems (Of Systems) Engineering: Leveraging Model Based Systems Engineering (MBSE) with OMG Standards

- 1. Corporate Overview and Contributions to Standards
- 2. Industry Trends
- 3. Use Cases Illustrations
- 4. Key Success Factors & Next Challenges

DASSAULT SYSTEMES

Accelerate sustainable innovation with 3DUNIVERSE & Virtual Twin

- Software Solutions for Model-based Systems Engineering, 3D Modeling & Simulation, Product Lifecycle Management, Collaboration and Data Science
- Created in 1981
- 6.2 b€ revenues (FY 2025, Non-IFRS)
- 22 500 Employees in 130+ countries
- 300 000 Enterprise Customers
- 45 million Users
- 17 000 **Partners** (Technology, Consulting, Sales, Integration & Services)

Deliver software solutions for 12 Industries

Collaborate with Industry Leaders

Participation in INDUSTRY STANDARDS Co-Creation & Adoption

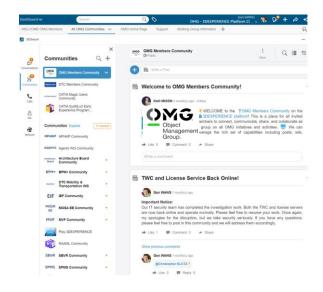
KEY PARTNERSHIPS

Actively participate and lead the creation of OMG Standards for MBSE

- Corporate Advisory Board
- Working Groups, MBSE INCOSE Certifications
- Delivers papers, presentations, tutorials

- Actively participate in MODELICA Association Projects for multidisciplinary simulation
 - Modelica Open Language Modelica
 - Functional Mockup Interface (FMI & eFMI for Embedded Systems & Software) TMi efmi
 - System Structure and Parameterization for co-simulation (SSP) 550

- CONCERTO Construction Of Novel CERTification methOds and means of compliance for disruptive technologies,
- AUTOSAR AUTomotive Open System Architecture
- Digital.auto Software Defined Vehicle innovations
- OpenScaling Large scale cyber systems modeling & simulation with Neural Networks


Key Collaboration with OMG® Open Management Group

Participating in Architecture Board and Specification definition

OMG STANDARD NAME	ACRONYM	VERSION	STATUS	PUBLICATION DATE
Action Language for Foundational UML	ALF	1.1	formal	June 2017
APIs for Knowledge Platforms	API4KP	1.0	formal	August 2024
UML Profile for BPMN Processes	BPMNProfile™	1.0	formal	July 2014
Commons Ontology Library	Commons	1.2 beta	beta	December 2024
CubeSat System Reference Model Profile	CSRM	1.1 beta	beta	March 2024
FACE Profile for UAF	FACE	1.0	formal	April 2023
Semantics of a Foundational Subset for Executable UML Models	FUML™	<u>1.5</u>	formal	June 2021
Kernel Modeling Language	KerML	1.0 beta 2	beta	April 2024
Metamodel Extension Facility	MEF	1.0	formal	September 2021
MOF to RDF Mapping	MOF2RDF	1.0	formal	September 2021
Ontology Definition Metamodel	<u>ODM™</u>	1.1	formal	September 2014
Precise Semantics of UML Composite Structures	PSCS™	1.2	formal	June 2019
Precise Semantics of UML State Machines	<u>PSSM</u>	1.0	formal	May 2019
Risk Analysis and Assessment Modeling Language	RAAML	1.1 beta	beta	June 2024
Space Telecommunications Interface	<u>STI</u>	1.0	formal	August 2024
SysML-Modelica Transformation	<u>SyM™</u>	1.0	formal	November 2012
OMG System Modeling Language	SysML®	2.0 beta 2	beta	April 2024
SysML Extension for Physical Interaction and Signal Flow Simulation	SysPhS	1.1	formal	May 2021
Systems Modeling API and Services	SystemsModelin gAPI	1.0 beta 2	beta	April 2024
Tools Output Integration Framework	TOIF	1.3	formal	March 2019
Unified Architecture Framework	UAF	1.2	formal	July 2022
Unified Modeling Language	UML®	2.4.1	formal	July 2011
Unified Profile for DoDAF and MODAF	UPDM™	2.1.1	formal	May 2017
XML Metadata Interchange	XMI®	2.5.1	formal	June 2015

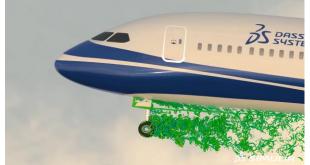
Supporting OMG Task Forces and Communities

Developing webinars for knowledge sharing among practitioners

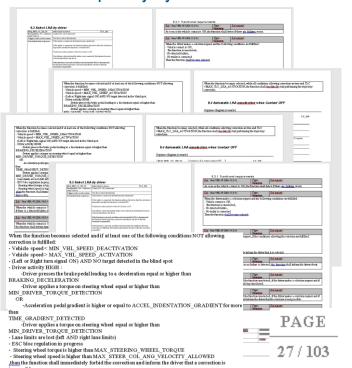
1. Corporate Overview and Contributions to Standards

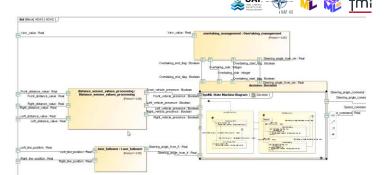

2. Industry Trends

- 3. Use Cases Illustrations
- 4. Key Success Factors & Next Challenges


MBSE as enabler for Digital Transformation...

40 years ago for Mechanical...





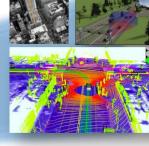
MBSE as enabler for Digital Transformation...

MODel & SIMulate to improve collaboration, evaluate "what-if" scenarios and support informed decision-making

...for multi-disciplinary systems

Evolution of ComplexityTowards Emergent Behaviors

Product



Mechanical System

Mono-discipline

Mechatronics Systems

Multidisciplinary field that includes a combination of mechanical, electrical, control and software

Software-defined Systems of Systems

Software-intensive distributed systems interacting together in an unpredictable world

Political, Economic, Sociocultural, Technological, Ecological, Legal

Volatility, Uncertainty, Complexity, Ambiguity

Industry 2.0

Mass production assembly lines using electrical power

Industry 3.0

Automated production using electronics, programmable logic controllers (PLC), IT systems and robotics

Industry 4.0

Smart factory. Autonomous decision making, machine learning, big data analysis, interoperability

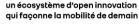
Evolution of Complexity Towards new cross-Industries Ecosystems

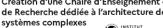
Manufacturing Industries

City & Infrastructure

Life Sciences

Création d'une Chaire d'Enseignement et de Recherche dédiée à l'architecture des





- 1. Corporate Overview and Contributions to Standards
- 2. Industry Trends
- 3. Use Cases Illustrations
- 4. Key Success Factors & Next Challenges

© Dassault Systèmes | Confidential Information | 2023

MBSE as Authoritative Source of Truth

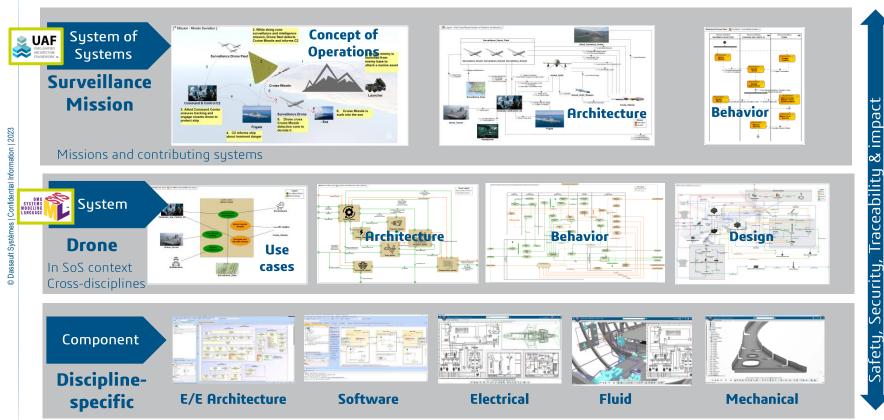
US Department of Defense Digital Engineering Strategy with MOSA Standardization

Source: DoD, June, 2018

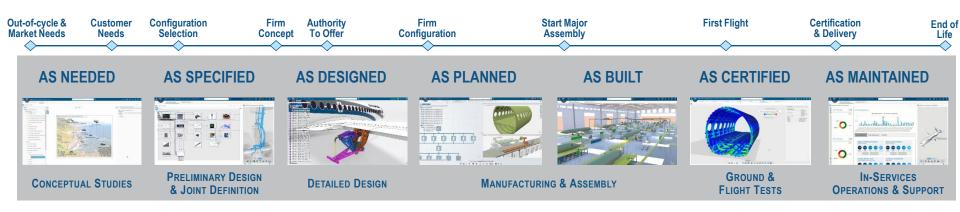
Systems Engineering Models used as a "Authoritative Source of Truth" for the full lifecycle phases

MOSA: Modular Open Systems Approach

MOSA can be defined as a technical and business strategy for designing an affordable and adaptable system.


MOSA is required by United States law. Title 10 U.S.C. 2446a.(b), Sec 805 states all major defense acquisition programs (MDAP) are to be designed and developed using a MOSA.

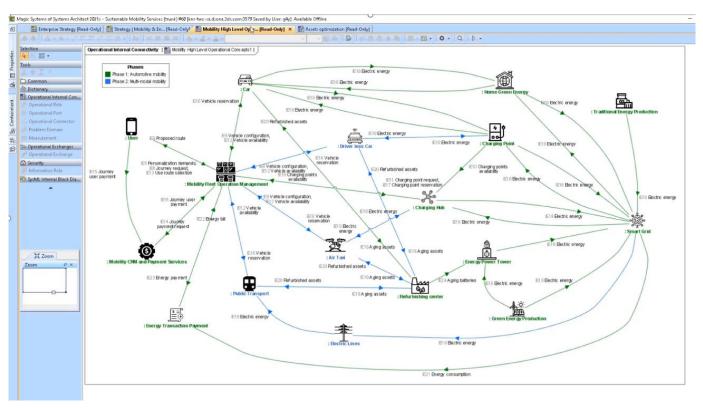
The U.S. Department of Defense breaks down MOSA into **five key objectives:**


- Significant cost savings or cost avoidance
- Schedule reduction and rapid deployment of new technology
- Opportunities for technical upgrades and refreshes
- Interoperability, with system of systems and mission integration
- Other benefits, ex: sustainment phase of a major system

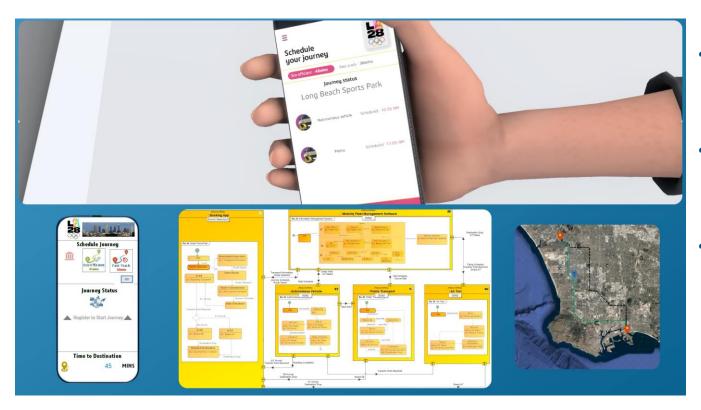
MBSE for Digital Continuity from Mission to Disciplines

MBSE as a Key Enabler in the Virtual Twin Lifecycle

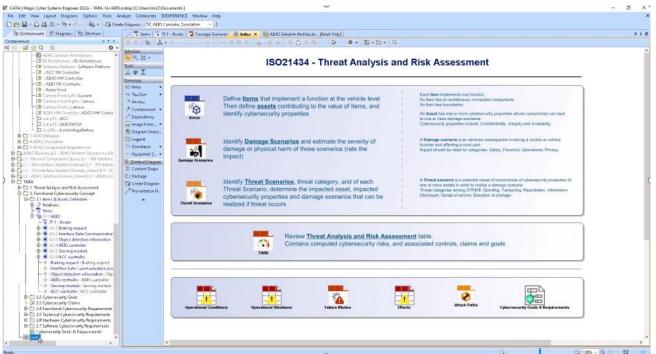
MBSE as a Key Enabler in the Virtual Twin Lifecycle



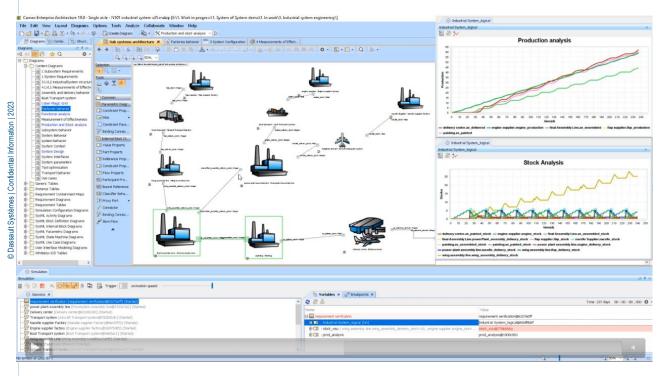
1. Enterprise Business Transformation Example: from Carmaker to Mobility as a Service Provider


1. Enterprise Business Transformation

- Define Enterprise new strategic vision and establish key metrics
- Model required capability, services and ecosystem
- Explore alternatives and evaluate new business opportunities
- Bridge strategy, operations and existing / new required resources (in-house vs. partnership)

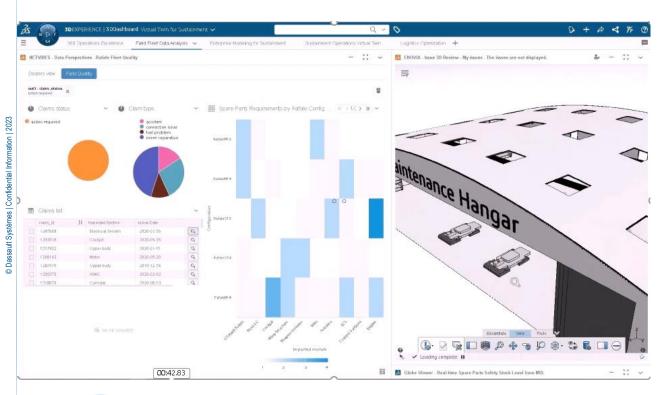

2. Mission Engineering

- Enhance stakeholders alignment and shared understanding
- Accelerate concept evaluation with "what-if" architecture trade-off
- Analyze interdependent systems to identify emergent behaviors and reduce risks at early development stages


3. Safe & Secured "by design" Engineering

- Enrich systems architecture models (SysML) with safety and security semantics (RAAML)
- Facilitate collaboration
 among Systems Architect,
 Safety Engineers and
 Cybersecurity Experts via a
 unified data referential
- Continuously assess safety and security from early design stages through to operational deployment

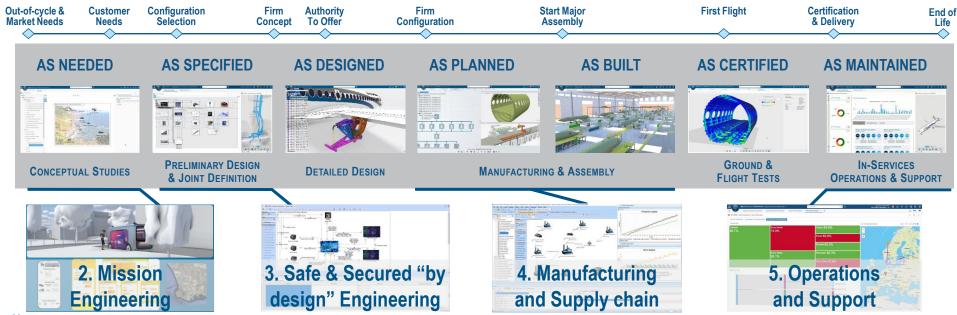
4. Manufacturing and Supply chain


- Capture interactions between stakeholders to define the industrial system and key targets (ex: delivery performance, budget performance, maximum storage capacity)
- Analyze Supply chain configurations trade-offs to reach KPIs (ex: stock level per supplier, delivery timelines, production rates)
- Perform early analysis at factory plant level to evaluate equipment changes impacts on the assembly line (ex: introduction of new automated guided vehicles)

https://www.incose.org/communities/working-groups-initiatives/systems-engineering-for-industrial-systems-(se4indus)

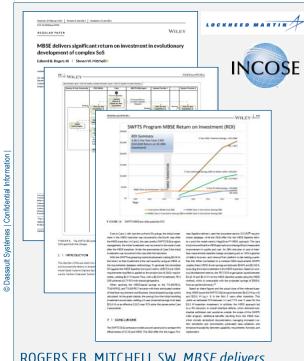
5. Operations and Support

- Simulate "what-if" scenarios for adaptive Maintenance, Repair & Operations strategies
- Improve assets reliability by detecting problems on the field and enhancing proactive maintenance and logistics solutions
- Empower "non-systems engineering" experts to leverage models, simulations and data informed decisionmaking

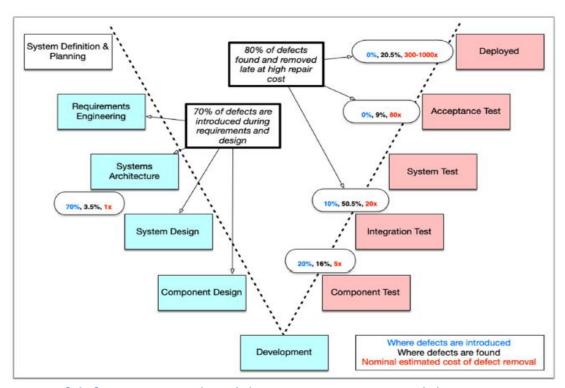

To be presented at <u>INCOSE International Symposium 2025</u>

A System-of-Systems Modeling, Simulation and Data Analytics Framework for Resilient Sustainment and Support Readiness Strategies

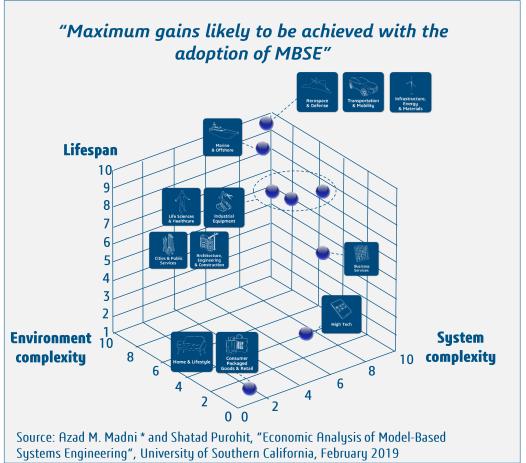
MBSE as a Key Enabler in the Virtual Twin Lifecycle



- 1. Corporate Overview and Contributions to Standards
- 2. Industry Trends
- 3. Use Cases Illustrations
- 4. Key Success Factors & Next Challenges


MBSE Adoption | Business Benefits

ROGERS EB, MITCHELL SW. MBSE delivers significant return on investment in evolutionary development of complex SoS.


Systems Engineering 2021;24:385–408.

https://doi.org/10.1002/sys.21592

70% of defects are introduced during requirements and design 80% of defects found at high repair cost in test phase

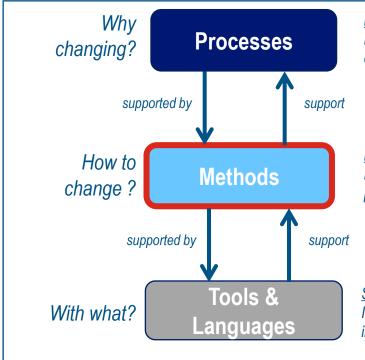
MBSE Adoption | Industry Maturity

Observed "Industry Footprint" for Systems Engineering

© Dassault Systèmes | Confidential Information |

Key Success Factors

"All models are wrong, but some are useful." George Box


Palais Royal
Muse du
Lourre Rivoli
Les Halles Cu Les Halles Rambute
Rivoli
Les Halles Rambute
Rivoli
Les Halles Rambute
Rivoli
Les Halles Rambute

a unambiguous formalism and semantics...

the relevant level of abstraction and viewpoints...

Key Success Factors

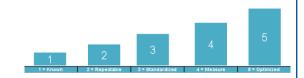
Process Referential Define activities to transform and expected results

Methodology Framework Define methodology frameworks and practices to implement the activities

Software Tools

Improve the efficiency of processes implementation and methodologies

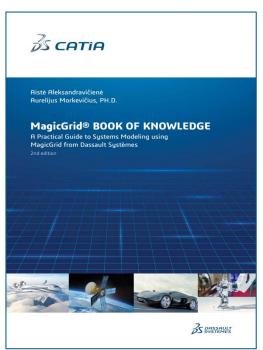
†Mi



+ 3rd party tools integration

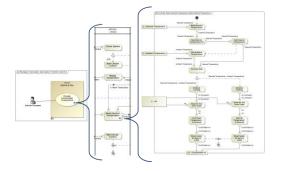
From theory to practice...

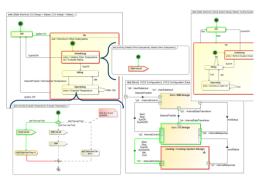
Change Management


Implement & measure conditions of success Value Assesment, Training & coaching, Community of Practitioners, Industrial pilot Projects, ...

Method Example | "MagicGrid Book of Knowkedge"

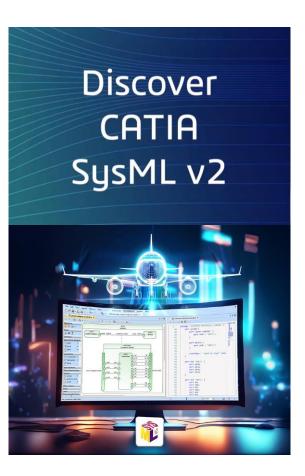
Free Download: https://discover.3ds.com/magicgrid-book-of-knowledge





- Condenseur Pulseur
- Groupe moto-ventilateur Détendeur

ISO 15288



- Active Participation since OMG SysML V2 inception
- Early Experience Program launched in December 2024 and open to Clients & Partners
- SysML v2 prototyping

 SysML v2 prototyping

 Multiple versions of prototypic conformance testing & spec verification

 SPANSAPULT

 SPANSAPULT

 SysML v2 prototypis

 Multiple versions of prototypis conformance testing & spec verification

 Spansapult

 SysML v2 prototypis conformance desting & spec verification

 SysML v2 prototypis conformance desting & spec verification

 Spansapult

 SysML v2 releases in 2026x

 Cameo(CATIA Magic & 3DEXPERIENCE platform Q1-2025)

 Spansapult

 SysML v2 releases in 2026x

 Cameo (CATIA Magic & 3DEXPERIENCE platform Q1-2025)

 Spansapult

 SysML v2 prototypis conformance desting & spec verification

 Spansapult

 SysML v2 prototypis conformance desting & spec verification

 Spansapult

 SysML v2 releases in 2026x

 Cameo (CATIA Magic & 3DEXPERIENCE platform Q1-2025)
- CATIA Magic SysMLv2 Community
 - Installation instructions
 - Tutorials and Videos
 - Best Practices, Tips and tricks
 - Collaborative SysMLv2 Models

https://3dswym.3dexperience.3ds.com/post/catia-user-community/discover-catia-sysml-v2-early-experience-program_UwLE13bMRgy8SAxvv-HHdw

Key Takeaways

MBSE drives digital transformation

- Acts as **the authoritative source of truth** throughout the system lifecycle, from concept to support
- Empowers "model & simulate" approaches to evaluate "what-if" scenarios and inform decisions
- Continuous align and engage stakeholders at **Product**, **Industrial System**, and **Enterprise & Value Network** scales
- Supports the creation of **re-usable company assets**

Industry standards such as UAF and SysML accelerate MBSE adoption

- Ensure **semantic consistency** and foster **collaboration** across disciplines and organizations
- Enables **interoperability** and toolchain integration
- Create new **opportunities for tool democratization** (e.g. SysML v2, Generative AI and Knowledge Management)

Beyond tools, success depends on a supportive transformation ecosystem

- Process, method and change management: "Value-based modeling"
- Investment in continuous upskilling and coaching
- **Knowledge sharing** among practitioners, leveraging key communities (e.g. OMG, INCOSE)

CATIA MBSE USER DAYS FRANCE

May 20 & 21 | Dassault Systemes Campus, Velizy | Free in-person workshop

https://myevents.3ds.com/fr/catia-mbse-user-days-france-2025

May 20
Keynotes from
Industrial Practitioners

May 21
Trainings on CATIA
MBSE Solutions

Virtual Worlds for Real Life