
Semantic Models That Run:
From CSV
to Context-Rich
Linked Data
A live, standards-based transformation pipeline.

Powered by a real-time domain model in Jargon.

No hardcoded rules.

No hidden scripts.

Just declarative mapping, semantic precision, and end-to-end transparency.

A public demonstration - submitted to the OMG Semantic Augmentation Challenge 2025 and shared
openly with the world so we can reclaim the executable benefits that modelling promised - but never
fully delivered.

CSV isn’t just flat - it’s fragile. No datatypes. No relationships. No identifiers. No context. Every value is just a string - and every
integration relies on humans guessing what columns mean. That’s the semantic gap this challenge asked us to close.

The challenge asked for a mapping format - a way to describe how columns relate to semantics. This submission includes just
that - mapping that is: readable, declarative, and aligned to real-world vocabularies like FIBO, GeoSPARQL, and schema.org.
BUT the mapping is just one artefact. What you’ll see here is a fully working system - one that transforms CSV into
structured JSON, validates it with JSON Schema, expands it with JSON-LD, and outputs RDF - all with no custom code.

This demo shows how semantic models can lift those flat structures into context-rich, machine-readable JSON-LD, using
declarative mappings and live validation, all driven by a single source of truth.

From this:

To this:

This is a fully runnable transformation pipeline, powered by real-time domain models authored in Jargon.

At the centre of this solution is a live Jargon model. It isn’t a static diagram. It’s the working source that drives every
transformation, validation, and semantic expansion in this demo. Every step is traceable, standards-aligned, and running in real
time.

Reusable and Extensible
This solution is not tied to FDIC data. The mapping format and model-driven approach apply to any
structured dataset - enabling scalable, repeatable semantic transformations across domains. Whether
banking, insurance, supply chains or climate data; the same workflow applies.

The process begins with a simple CSV file. A declarative mapping - aligned to the domain model - transforms that input into
structured JSON. The result is then validated using JSON Schema, and expanded with JSON-LD to include globally
meaningful identifiers and types - all derived from the same model.

The process is driven by The Model that Drives Everything. The only other input is the competition's CSV file. The transformation
pipeline proceeds through these stages:

Use the Mapping to transform CSV to structured JSON
Validate the transformation with JSON Schema
Expand the JSON with JSON-LD and RDF vocabularies
Validate semantic alignment of the expanded JSON

The model also includes vocabularies such as GEOSPARQL, schema.org, and selected elements of FIBO. These were
transformed from published RDF sources into reusable domain models inside Jargon. Some were imported directly. Others,
like FIBO, use cherry-picked IRIs.

Once imported, these behave like native domains: composable, semantic, and runnable - without OWL reasoning or traditional
ontology tooling.

This submission isn’t a prototype or wireframe. It’s a running, standards-based implementation.
Every step is live. Every artifact is generated directly from the model.

Traditional modeling tools focus on completeness or theoretical rigor. But they often stop short of producing
outputs that real systems can use. This results in models which may look precise, but are still reliant on
brittle scripts or manual interpretation.

This demo takes a different approach. The Jargon model powers everything you see.
JSON Schema, OpenAPI, JSON-LD, RDF, and validation logic all come from a single, traceable source of
truth.
No translation layer. No handoffs. No drift.

This is modeling that runs. Not simulation. Not documentation. A living contract between data, systems, and
semantics - in real time.

This demonstration uses W3C and industry standards from start to finish:

JSON Schema for validation
JSON-LD for semantic context
RDF for graph reasoning

Jargon makes these standards usable without custom code, scripts, or hand-built vocabularies.

And Jargon is the engine behind the model:

It defines the structure and relationships in the data
It links each property to its source column
It generates the mapping, schema, context, and OpenAPI spec automatically
It serves the model live, so you can trace every semantic rule back to its source

Every transformation in this demo starts here and stays aligned throughout. No manual edits. No duplication. No drift.

This isn’t a screenshot. It’s a live Domain Model served by Jargon.
What you see below is the actual model running behind this demo - the same source that powers every
mapping, validation, and semantic rule on the page.
Not a mockup. Not a snapshot. A real model, live and in use.

🚀

 Open the Full Domain Model in Jargon

This is the raw data used in the challenge: a flat CSV file with basic policyholder and provider details. Other than the domain
model, this is the only input required.

This is a live, working system.
You can modify the CSV below. Your changes will be used as inputs to the mapping process.
There’s no hidden logic or manual setup. The structure, relationships, and validation are all driven by the
model.

Note:

This demo runs on a 100-row sample of the official FDIC dataset to ensure instant responsiveness in the
browser. The full 80,000-row dataset has been processed using the exact same model and mapping — with
no code changes. The resulting expanded JSON-LD output (over 450MB) is included in the submission ZIP
as evidence of successful full-scale execution.

This mapping shows how each CSV column connects to elements in the domain model. It wasn’t written by hand. Jargon
generated it automatically based on the model. Each field you see is derived from a class or property in that model.

Model-driven and web-native:
To include a property in the mapping, the author just adds a [csv.columnName] annotation in the model.

Jargon does the rest:
Generating a plain JSON mapping file - inspired by JSONPath, but tailored for CSV-to-JSON transformation.

Want to see how it works? View the mapping format.

⚙

 GENERATED MAPPING (FROM JARGON)

This is where all of the pieces come together. Where the magic happens.

You’ve seen the model and its mapping. Now you can run the transformation.

The button below takes the CSV input and applies the mapping generated by Jargon. It’s not handcrafted logic. It’s model-
driven structure running in real time.

This transformation is live and reactive. Modify the CSV above and rerun this step to see updated results immediately.

Transform

🎉

 GENERATED JSON (LIVE)

The specific structure of the transformed JSON isn’t what matters — it’s that the structure we use is known, descriptive, and
enforceable. Without that, we can’t reliably apply meaning or process the data. JSON Schema gives us that guarantee.

The schema shown here wasn’t written by hand. Jargon generated it automatically from The Model that Drives Everything —
the single source of truth for this entire pipeline. You can verify this by opening the dropdown in the embedded model above -
the schema matches exactly.

Jargon doesn’t just help you design models. It makes sure those designs are enforced, from transformation to validation and
beyond.

A quick note on the source data: the provided CSV contained a number of structural inconsistencies —
the same logical columns represented in different ways (for example, 1 vs TRUE, date serials vs date
strings), and even a repeated header row midway through the file.

I don’t know the provenance of the file, and it may represent a heroic effort to gather data from diverse
contributors. But this is precisely why structural validation matters. A standards-based JSON Schema can
catch these inconsistencies early — helping teams avoid costly surprises downstream.

⚙

 JSON SCHEMA (FROM JARGON)

Validate

Click "Validate" to check the generated JSON aligns with the JSON Schema.

Even richly structured JSON isn’t enough on its own. Machines still need help understanding what the data means, not just
how it's shaped.

This step uses the @context generated by Jargon to expand each field into a fully qualified semantic identifier. It’s how we turn
column names into machine-readable references that align with shared vocabularies.

⚙

 JSON-LD @CONTXT (FROM JARGON)

This is the core requirement of the Semantic Augmentation Challenge:
“Show a mapping of columns in a machine-readable and processable format to common and citable
resources.”

That’s exactly what this step does. Using a model-generated @context, we resolve fields like:

dateEstablished → schema:foundingDate
branchAddress → schema:streetAddress
numOffices → xsd:integer

This isn’t just prettier JSON. It’s enriched, contextual data - ready for validation, integration, querying, or reasoning by any
Linked Data system.

The result below shows the fully expanded form in both JSON-LD and RDF (Turtle/N-Quads) views:

Expand

RDF (N-Quads)

Once data has been expanded into its semantic form using JSON-LD, the question remains: "was it expanded correctly?"
Were the right URIs applied? The right structure used? The right context referenced?

Jargon generates a second-layer validation schema — one that operates not on the raw data, but on the expanded JSON-LD
graph. This schema confirms that:

The correct URIs were applied to each field
The expected data types and structures match the semantics
The correct JSON-LD context was used during expansion

This acts as a contract: not just that the data is present, but that it is semantically aligned and trustworthy — without relying on
SHACL or OWL.

providerId → schema:providerId
policyType → omg2:policyType

⚙

 SEMANTIC JSON SCHEMA (FROM JARGON)

Validate Semantics

Click "Validate Semantics" to check the expanded JSON contains the expected semantic mappings.

The Jargon models aren't only describing structure - they define meaning. This section shows the machine-readable
vocabulary generated automatically from the same domain model used for transformation and validation.

The output includes both a JSON-LD graph and a RDF (N-Quads), declaring every class and property with types, labels,
domains, and ranges. It uses standard ontologies like rdfs, owl, xsd, and schema.org.

This makes the semantics portable.
Any system that understands RDF - whether for validation, alignment, or integration - can work with this
model directly.

Because the vocabulary comes from the same source as the schema and mappings, it stays aligned.
No duplication. No drift.

RDF Vocabulary

As datasets evolve, metadata can easily fall out of sync. Columns change. Definitions shift. Without versioning, even well-
modeled data can become misleading.

This demonstration shows a snapshot in time, but the platform behind it - Jargon - is designed for ongoing change:

Every domain model is versioned, with immutable references for each release.
Mappings, schemas, and contexts are generated from the model, so they stay current by design.
When updates are needed, Jargon provides diff views, suggestions, validation rules, and release workflows to manage
change.

Jargon acts as a semantic version control system. Keeping metadata aligned as the meaning of data evolves.

These screenshots are taken from the UNTP Core domain, an active project used by the United Nations Transparency Protocol
team. They show how Jargon supports versioning, collaboration, and semantic reuse in real-world modeling use case.

Version history for a published model

Semantic diff and model change viewer

Visual dependency graph for reuse and alignment

Want to explore it live? Visit the UNTP Core domain to see how shared vocabularies are managed across multiple projects.

This approach isn’t just about one dataset. It's about a repeatable, model-driven pipeline that keeps everything aligned:

Jargon defines the meaning.
Every class, property, and rule comes from a domain model. No scattered config. No guesswork.

The CSV holds the raw facts.
No markup or preprocessing. Just data.

Jargon generates everything else.
A declarative mapping.json
A schema.json for validation
A JSON-LD @context for semantics

The pipeline can run anywhere - even in your browser.
It's powered by the model, not by scripts or custom code.

jargon / ModelsThatRun
2 1

100 % ˅

DocumentDocument
 ^@context:Text
 institutions:Institution{}

InstitutionInstitution
 ^fdicCertNumber:Integer
 name:schema.Thing.name
 branches:Branch{}

BranchBranch
 ^locationId:Integer
 offname:schema.Thing.name
 officeNumber:Integer
 mainOffice:Indicator
 runDate:Date
 establishedDate:schema.Organization.foundingDate
 acquisitionDate:Date
 address:PostalAddress
 location:GeoPoint
 geoContext:GeoContext
 regulatory:RegulatoryStatus

PostalAddressPostalAddress
 street:schema.PostalAddress.streetAddress
 street2:Text
 city:schema.PostalAddress.addressLocality
 state:schema.PostalAddress.addressRegion
 county:Text
 zipCode:schema.PostalAddress.postalCode

GeoPointGeoPoint
 latitude:geo.Point.lat
 longitude:geo.Point.long

0 0 4 more

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Definitions

Do not display artefacts

X,Y,OBJECTID,ACQDATE,ADDRESS,ADDRESS2,BKCLASS,CBSA,CBSA_DIV,CBSA_DIV_FLG,CBSA_DIV_NO,CBSA_METRO,CBSA_METRO_FLG,CBSA_METRO_NAME,CBSA_MIC
RO_FLG,CBSA_NO,CERT,CITY,COUNTY,CSA,CSA_FLG,CSA_NO,ESTYMD,FI_UNINUM,ID,LATITUDE,LONGITUDE,MAINOFF,MDI_STATUS_CODE,MDI_STATUS_DESC,NAME,
OFFNAME,OFFNUM,RUNDATE,SERVTYPE,SERVTYPE_DESC,STALP,STCNTY,STNAME,UNINUM,ZIP
-89.554910003,38.6842860180001,1,42539,18001 Saint Rose Rd,,SM,"St. Louis, MO-IL",,0,,41180,1,"St. Louis, MO-
IL",0,41180,14761,Breese,Clinton,"St. Louis-St. Charles-Farmington, MO-
IL",1,476,30964,9231,223055,38.6842860182208,-89.5549100030003,0,,NULL,1NB Bank,ST. ROSE FACILITY BRANCH,3,45401,11,FULL SERVICE -
BRICK AND MORTAR,IL,17027,Illinois,223055,62230
-89.372215024,38.6181820130001,2,,1350 12th St,,SM,"St. Louis, MO-IL",,0,,41180,1,"St. Louis, MO-IL",0,41180,14761,Carlyle,Clinton,"St.
Louis-St. Charles-Farmington, MO-IL",1,476,25373,9231,232078,38.6181820130991,-89.3722150239032,0,,NULL,1NB Bank,1350 12TH STREET
FACILITY,1,45401,11,FULL SERVICE - BRICK AND MORTAR,IL,17027,Illinois,232078,62231
-89.612338026,38.6117310070001,3,,500 W Harrison St,,SM,"St. Louis, MO-IL",,0,,41180,1,"St. Louis, MO-

Semantic Models That Run: From CSV to
Context-Rich Linked Data
What if meaning could be added to raw data — and made executable, not
just descriptive?

SERVTYPE_DESC,ADDRESS,CITY,COUNTY,STALP,ZIP
"FULL SERVICE - BRICK AND MORTAR","18001 Saint Rose Rd", "Breese", "Clinton", "IL", "62230"

1
2

{
 "https://banks.data.fdic.gov/ontology/hasServiceType": {
 "@type": "http://www.w3.org/2001/XMLSchema#string",
 "@value": "FULL SERVICE - BRICK AND MORTAR",
 },
 "fdic:address": [
 {
 "https://schema.org/addressLocality": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#string",
 "@value": "Breese"
 }
],
 "fdic:county": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#string",
 "@value": "Clinton"
 }
],
 "https://schema.org/addressRegion": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#string",
 "@value": "IL"
 }
],
 "https://schema.org/streetAddress": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#string",
 "@value": "18001 Saint Rose Rd"
 }
],
 "https://schema.org/postalCode": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#string",
 "@value": "62230"
 }
]
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

The Model That Drives Everything
This isn’t a diagram. It’s the source of truth — and the engine behind
everything you’re about to see.

CSV Input
Just rows and columns for now — but it’s the foundation we’ll transform
into something semantically rich.

Mapping Definition
The bridge between model and data — generated, not hand-written, and
entirely traceable.

{
 "type[]": {
 "constant": "Document"
 },
 "institutions[{@CERT}].fdicCertNumber": {
 "column": "CERT",
 "type": "number"
 },
 "institutions[{@CERT}].type[]": {
 "constant": "Institution"
 },
 "institutions[{@CERT}].name": {
 "column": "NAME",
 "type": "string"

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Transform CSV to JSON
Here’s where the model proves itself. One click turns tabular data into
structured content - ready for meaning.

Click Click "Transform""Transform" to generate JSON from the CSV input and mapping above. to generate JSON from the CSV input and mapping above.11

Validate with JSON Schema
We check the shape of the data — and ensure it matches the model’s
expectations exactly.

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "type": {
 "type": "array",
 "readOnly": true,
 "default": [
 "Document"
],
 "items": {
 "type": "string"
 },

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Expand with JSON-LD
Now every field gains meaning. The data isn’t just structured — it’s
semantically explicit.

{
 "@context": {
 "fdic": "http://example.com/fdic",
 "schema": "https://schema.org/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "@protected": true,
 "@version": 1.1,
 "type": {
 "@id": "@type"
 },
 "Branch": {
 "@protected": true,
 "@id": "fdic:Branch",
 "@context": {

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Validate Semantic Alignment
It’s not enough to say the data is enriched — this proves it was enriched
correctly.

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$defs": {
 "Document": {
 "type": "object",
 "required": [
 "@type"
],
 "properties": {
 "@type": {
 "type": "array",
 "contains": {
 "const": "fdic:Document"
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14

From Model to Vocabulary
This is where the semantics become portable — described in RDF, aligned
to standards, and always in sync with the model.

Handling Change Over Time
Data evolves. Models drift. This shows how Jargon manages semantic
change without losing control.

Bringing It All Together
Not just a one-off demo — a repeatable system where models, mappings,
and semantics stay in sync

🎉

 EXPANDED JSON-LD (LIVE)

Click Click "Expand""Expand" to see expanded JSON-LD. to see expanded JSON-LD.11

⚙

 JSON-LD VOCABULARY (FROM JARGON)

{
 "@context": {
 "fdic": "http://example.com/fdic",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "owl": "http://www.w3.org/2002/07/owl#",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "schema": "https://schema.org/",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#"
 },
 "@graph": [
 {
 "@id": "fdic:Document",
 "@type": "rdfs:Class",

1
2
3
4
5
6
7
8
9
10
11
12
13
14

JSON-LD

JSON-LD Vocabulary

 Semantic Models That Run: From CSV to Context-Rich Linked Data. Powered by

https://jargon.sh/user/jargon/Cafe/v/working/editor
https://jargon.sh/
https://www.omg.org/events/2025q2/special-events/omg-semantic-augmentation-challenge.htm
https://models-that-run.jargon.sh/mapping.html
https://jargon.sh/user/unece/untp-core/v/working
https://jargon.sh/

It's powered by the model, not by scripts or custom code.

The output is semantically enriched.
The final JSON aligns with shared vocabularies like Schema.org, FIBO, and GeoSPARQL.

Metadata isn’t bolted on. It’s shaped by the model itself.
This is how Jargon answers the challenge: a semantic pipeline that begins with a model and ends with
trusted, machine-readable information - not just data, but semantics that run.

All of this is possible because of the underlying model. But what if you wanted to build a real system on top of it?

Jargon also generates a full OpenAPI specification, including request and response shapes, semantic
field names, and example payloads.

This same model can:

Validate data using JSON Schema
Provide semantic context using JSON-LD
Define integration contracts using OpenAPI
Track versions and changes across all of it

This isn’t just about mapping. It’s infrastructure built on models. The outputs are consistent, governed, and ready to run.

🚀

 Open the Full API Specification

What makes it different is how it was done:

The model wasn’t hardcoded. It was built visually, once, and used everywhere.
Semantics were part of the model from the start.
The mapping to JSON was declarative and driven by structure.
Expansion used a generated @context, not handwritten rules.

Every artifact - the mapping, schema, context, and output - came from a single source of truth. Nothing is stitched together.
Nothing can go out of sync.

This isn’t just format conversion. It’s semantics that run. And it shows how models can become real, working parts of systems -
with immediate feedback and no ambiguity.

For years, we built models that were too complicated for people to use - and still not useful to machines.

This demonstration flips that. The model is simple enough to understand, and structured enough to run.

It doesn’t replace semantic modeling - it builds on it and applies it where it matters most.
By making semantics meaningful for machines.

By making them Run.

We’ve spent decades drawing models, publishing standards, and writing specs. But somewhere along the way, modeling lost
its footing. It became too abstract for developers, too brittle for change, and too removed from the systems it was meant to
serve.

The results are clear:

The last two generations of developers never picked it up.
Startups rejected it outright.
Standards have struggled to keep pace with the speed of real software delivery.

This approach shows another way:

The model isn’t documentation — it’s the engine.
The outputs aren’t placeholders — they run in real pipelines, with tools teams already use.
Semantics aren’t layered on — they emerge naturally from structure, meaning, and context.

No triple store. No OWL. No SHACL.
Just a single, live model — powering every transformation, validation, and API contract.
Executable. Traceable. Governable.

It looks like modeling.
It feels like modeling.

But it runs.

This isn’t a reinvention of UML.
It’s a quiet demonstration of what modeling could have become — and maybe still can.

If this feels familiar, like something you once tried to do but didn’t quite land, that’s because it is. I built it to
show that it’s possible. Not in theory. In practice. And this submission is the proof.

If the time feels right to try again — I’d welcome the conversation.
alastair [at] jargon [dot] sh

jargon / ModelsThatRun

Search...

Introduction

Authentication

Institution

Documentation Powered by ReDoc

ModelsThatRun - Demo API (unreleased)

Download OpenAPI specification: Download

E-mail: youremail@example.com URL: https://example.com/contact

Introduction

This is an automatically generated API specification for the ModelsThatRun demo.

Authentication

|

One More Thing…
Yes, Jargon even generates API designs. The same model that structures
and enriches the data also powers real-world integration.

What Just Happened?
You’ve just walked through a complete semantic transformation - from a
flat CSV file to structured, machine-readable JSON-LD.

Reflections
This demonstration was built to answer a technical challenge, which it did
by applying structured modeling — but the unspoken, deeper challenge
behind the competition is a strategic one.

https://jargon.sh/redoc.html?url=/user/jargon/Cafe/v/working/artefacts/openapi/render.json

