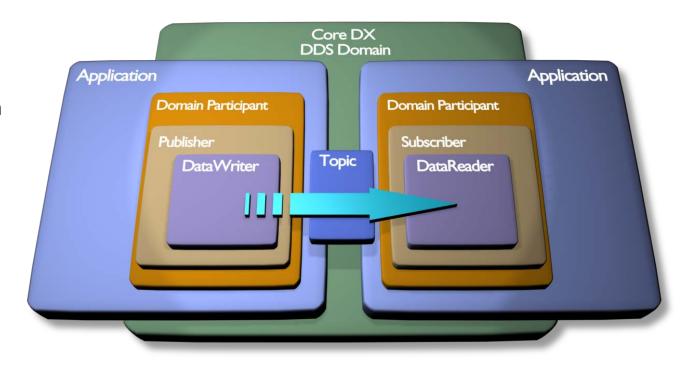


DDS Security

Nina Tucker Twin Oaks Computing VP Technology March 2018

Data Distribution Service


- DDS is a Data-Centric Communications Middleware
 - **Distributed** Data Communications no brokers required
 - System Components are **Decoupled**
 - **Robust** infrastructure for critical systems
 - Scalable from edge to cloud, from bare metal to servers

DDS Architecture and Terminology

- DomainParticipant
 - Associated with a Domain
 - Communicates with other
 DomainParticipants in the same Domain
 - Contains DataWriters, DataReaders,
 Topics
- DataWriters and DataReaders are "matched" during Discovery
- DataWriter publishes data on a Topic
- DataReader subscribes to a Topic
- Each Topic has a defined Data Type

Automatic

- No configuration of IP address, port numbers, servers, or brokers
- Peers may be on the same machine or across a network
- Simply indicate your intent to publish or subscribe, and start writing/reading

Dynamic

- Peers may come and go, or move at any time
- Publishers and Subscribers may be created an deleted
- Networks may be disconnected and reconnected

DDS Configurability: QoS

	QoS Policy
a	DURABILITY
Cache	HISTORY
ပီ	LIFESPAN
S	WRITER DATA LIFECYCLE
urce	READER DATA LIFECYCLE
Resources	ENTITY FACTORY
Ä	RESOURCE LIMITS
λ.	RELIABILITY
Delivery	TIME BASED FILTER
Del	DEADLINE
	CONTENT FILTERS

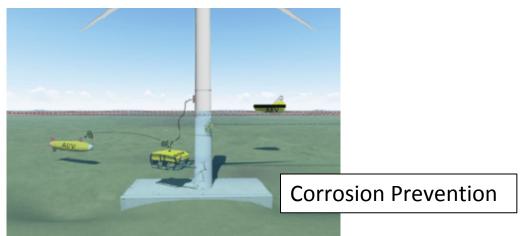
QoS Policy	
USER DATA	
TOPIC DATA	
GROUP DATA	
PARTITION	
PRESENTATION	
DESTINATION ORDER	
OWNERSHIP	
OWNERSHIP STRENGTH	
LIVELINESS	
LATENCY BUDGET	
TRANSPORT PRIORITY	

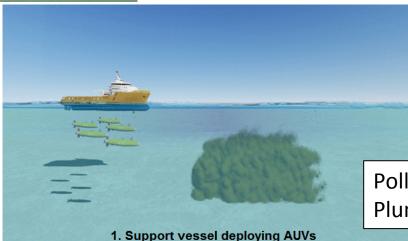
Presentation

Transport

Cyber ThreatsReal World Examples

Example Threat Analysis


SWARMs)):


Smart and Networking Underwater

Robots in Cooperation Meshes

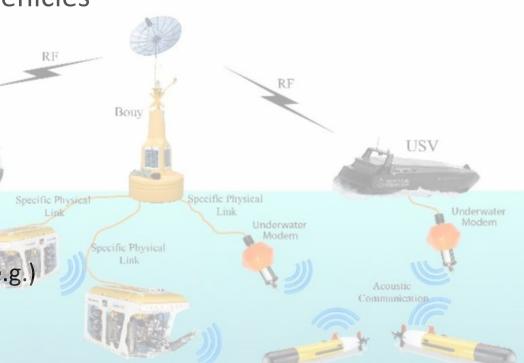
SWARMS Case Study

Pollution Monitoring Plume Tracking

SWARMS Case Study

Mission Management Tool

Threat Analysis

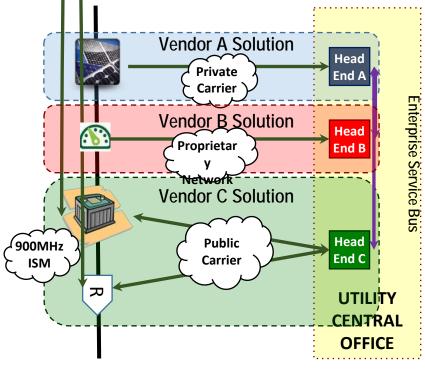

Take over of unmanned and autonomous vehicles

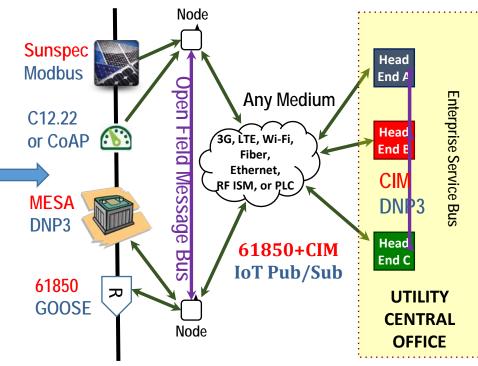
Oil / gas lines

Military / civilian vessels

- Unauthenticated drone infiltrating swarm
- Release of Confidential Information and
 - Information on drone mission, capability
 - Nature of items found on sea floor (weapons, e.g.)
 - Environmental data

Example Threat Analysis


Duke Energy Emerging Technology Office



OpenFMB Cyber Security Overview

OpenFMB Case Study

DUKE ENERGY

Key Observations:

- 1. Single-Purpose Functions
- 2. Proprietary & Silo'ed systems
- 3. Latent , Error-prone Data
- 4. OT/IT/Telecom Disconnected
- 5. No Field Interoperability!

Key Observations:

- 1. Multi-Purpose Functions
- Modular & Scalable HW&SW
- End-to-End Situational Awareness
- 4. OT/IT/Telecom Convergence
- 5. True Field Interoperability!

OpenFMB Case Study

- Loss of power, small areas to wide scale
 - Loss of life
 - Safety and Security Issues
 - Failure of critical infrastructure operation
- Masquerade / Takeover control applications
 - Control the Switch / Breaker / Recloser / Voltage Regulator / PCC
 - Spoof Status
 - Change Setpoints, Disable Protection
 - Drive Distributed Denial-of-Service attack (DDoS)

Cyber Security Elements

Identification and Authentication

- I&A: Identification & Authentication
 - Who is this participant on the network?
 - Do I trust this participant is who he claims?
 - Is this participant authorized to be part of these communications?

- Access Control
 - Is checked after Identification & Authentication
 - Does this participant have permission to join the network?
 - Does this participant have read and/or write access on the network?

Integrity and Confidentiality

Integrity

Has the data been tampered with?

Confidentiality

Hide the data, keep it secret

DDS SecurityThe Basics

- Secure communications solution fully integrated into the DDS architecture
 - Standardized API and wire protocol for Portability and Interoperability

Covers all aspects of secure communications, including:

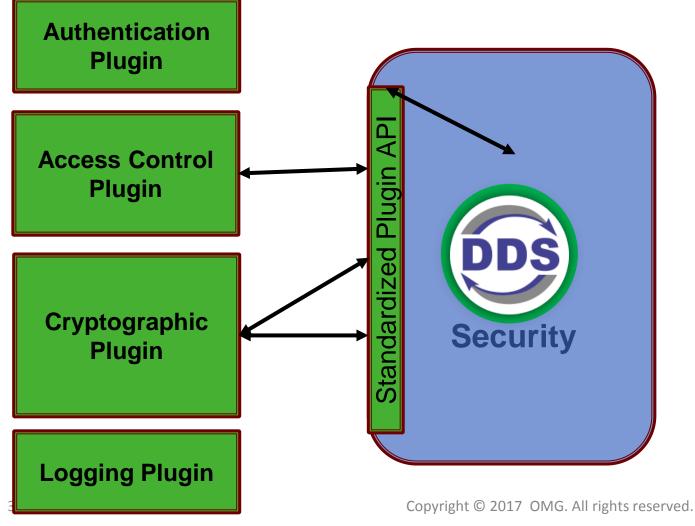
- Authentication
- Integrity
- Confidentiality
- Access Control
- Plug-in model
 - Standardized
 - User defined

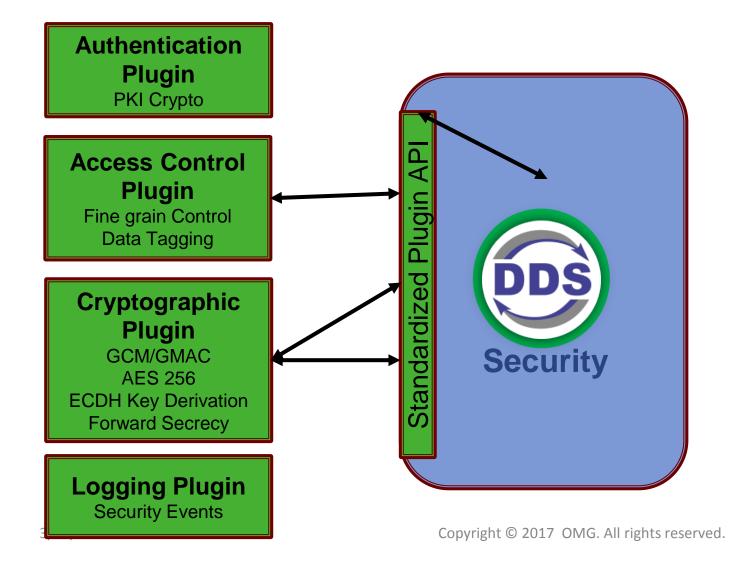
- DDS Security is still DDS
 - Decoupled, Flexible, Scalable architecture
 - Eases development of distributed systems across disparate computing platforms
 - Powerful configurability
- Scalable high-performance Security
 - Topic-by-Topic configuration (not transport-level configuration)

Who Uses DDS Security

- Avionics
- Naval
- Unmanned Vehicles
- Ground Stations

- Commercial:
 - IIoT Systems
 - Avionics
 - Automotive
 - Consumer Electronics
 - Energy Solutions / Smart Grid
 - Medical Devices

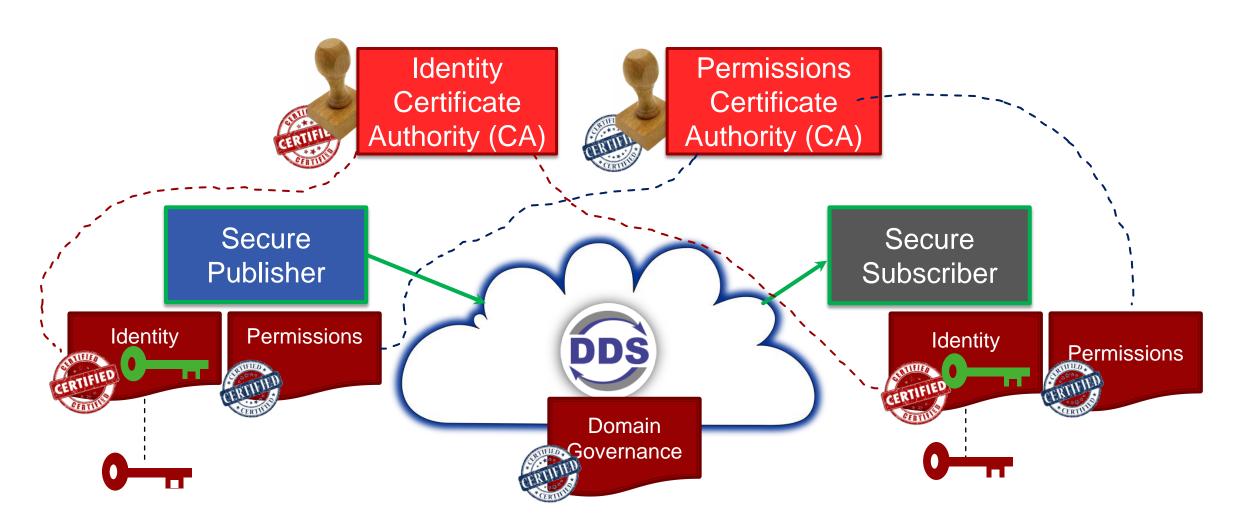




DDS Security: Plug-in Architecture

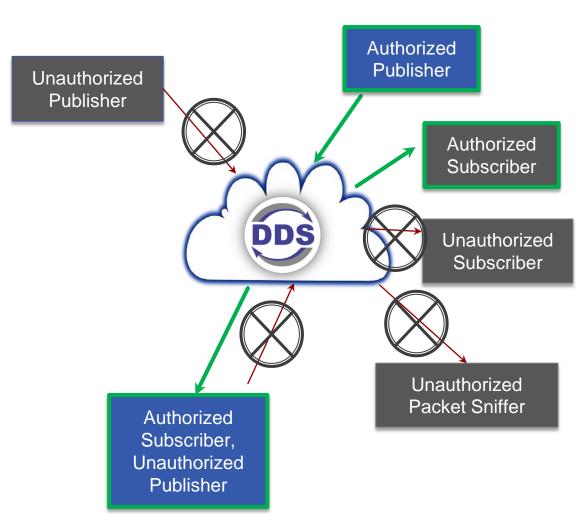
- Standardized API
 - Interface between modules and DDS Security protocols
 - Modules may be Standard or Custom
 - Includes all aspects of secure communications
- Standardized modules
 - Interoperable
 - Use common crypto algorithms

- Standardized Plugin Modules
 - PKI + GCM + GMAC
 - AES 256
 - ECDH Key Derivation
- Interoperable


DDS Security: Configurability

- Apply security policies
 - Integrity / Encryption / Access Controls
- With fine grained controls
 - Individual Topics
 - Application Data, Discovery Data, Liveliness Data

DDS Security Components



DDS SecurityLive Demonstration

DDS Security Overview

- Covers all Aspects of secure communications
 - Authentication
 - Access Control
 - Integrity
 - Confidentiality
- Full Configuration Flexibility on a Topic-by-Topic basis
- State-of-the-art Security Technologies
 - PKI Crypto
 - GCM/GMAC, AES
 - Forward Secrecy
- Maintains key benefits of DDS:
 - **Distributed** Data Communications no brokers required
 - System Components are **Decoupled**
 - **Robust** infrastructure for critical systems
 - **Scalable** from edge to cloud, from bare metal to servers

Thank you!

Nina Tucker

ntucker@twinoakscomputing.com

http://www.twinoakscomputing.com