Model Synchronization in a Joint-Cognitive Paradigm

Mathsig Presentation 7th of December 2022

Siyuan Ji

Context & Motivation

- Some challenges observed in practicing MBSE methodologies
 - How to maintain consistency between models?
 - How can we establish traceability without messing up the model complexity?
 - How do we handle change impacts in models?

• Our solution: **Model Synchronisation** with Structure Preserving Transformations [1]

What is Model Synchronisation?

- Two **consistent** models, M_{lpha} and M_{eta}
- A change made to a M_{α} , denoted as Δ_{α}
- Synchronisation means [2] a change Δ_{β} is mandatory to M_{β} in order to maintain the consistency between M_{α} and M_{β}
- Issues with manual synchronisation: labour intensive, error-prone, lacking generality & repeatability
- Proposal: Semi-automated, model transformations, T, following a joint cognitive approach

Robotic Arm Example

• Scenario:

- Inspector checks the part, if OK
- Robotic Arm then picks the part and places it on Assembler's workbench
- Assembler finally assembles the part
- Change to functionality:
 - From Pick & Place, to Pick & Assemble
- Benefit:
 - Higher efficiency with reduced safety risks

 M_{α} : Use Cases

Robotic Arm
Pick
Part
Place
Part

T [1, 3]

: Use Cases M_{α} ': Revised Use Cases

 M_{β} : Activities

 M_{β}' : Revised Activities

Matrix Representation

Row/Column Headers: model elements

Pick Part

Inspector

- Matrix element: dependencies
- $W_{i,j}$: in-model dependencies, e.g., A_1 is associated with U_1
- $Q_{i,i}$: cross-model dependencies e.g., A_1 is concordant with S_{A_1} e.g., U_1 is decomposed into a_2

Synchronising Changes

 a_3

Summary

- Users can follow any MBSE methodology to develop initially consistent diagrams/models
- The tool should *maintain the consistency* in the absence of explicitly modelled cross-model dependencies.
- This is achieved through model synchronisation enabled by model transformation
- A joint-cognitive approach. For example: the tool analyses elements being affected by a change while user decides how to make consistent changes to the affected elements.
- MapleMBSE clearly has the capability for capturing in-model dependencies, but what about cross-model dependencies?

References

- [1] Ji, S., Wilkinson, M., & Dickerson, C. E. (2022). Structure Preserving Transformations for Practical Model-based Systems Engineering. To appear in 8th IEEE International Symposium on Systems Engineering, ISSE2022, arXiv preprint https://arxiv.org/abs/2209.07935
- [2] Hettel, T., Lawley, M., & Raymond, K. (2008, July). Model synchronisation: Definitions for round-trip engineering. In *International Conference on Theory and Practice of Model Transformations* (pp. 31-45). Springer, Berlin, Heidelberg.
- [3] Dickerson, C. E., & Ji, S. (2021). *Essential Architecture and Principles of Systems Engineering*. CRC Press.