Model Synchronization in a Joint-Cognitive Paradigm *Mathsig Presentation* 7th of December 2022 Siyuan Ji ### Context & Motivation - Some challenges observed in practicing MBSE methodologies - How to maintain consistency between models? - How can we establish traceability without messing up the model complexity? - How do we handle change impacts in models? • Our solution: **Model Synchronisation** with Structure Preserving Transformations [1] # What is Model Synchronisation? - Two **consistent** models, M_{lpha} and M_{eta} - A change made to a M_{α} , denoted as Δ_{α} - Synchronisation means [2] a change Δ_{β} is mandatory to M_{β} in order to maintain the consistency between M_{α} and M_{β} - Issues with manual synchronisation: labour intensive, error-prone, lacking generality & repeatability - Proposal: Semi-automated, model transformations, T, following a joint cognitive approach ## Robotic Arm Example #### • Scenario: - Inspector checks the part, if OK - Robotic Arm then picks the part and places it on Assembler's workbench - Assembler finally assembles the part - Change to functionality: - From Pick & Place, to Pick & Assemble - Benefit: - Higher efficiency with reduced safety risks M_{α} : Use Cases Robotic Arm Pick Part Place Part T [1, 3] : Use Cases M_{α} ': Revised Use Cases M_{β} : Activities M_{β}' : Revised Activities ## Matrix Representation Row/Column Headers: model elements Pick Part Inspector - Matrix element: dependencies - $W_{i,j}$: in-model dependencies, e.g., A_1 is associated with U_1 - $Q_{i,i}$: cross-model dependencies e.g., A_1 is concordant with S_{A_1} e.g., U_1 is decomposed into a_2 ## Synchronising Changes a_3 ## Summary - Users can follow any MBSE methodology to develop initially consistent diagrams/models - The tool should *maintain the consistency* in the absence of explicitly modelled cross-model dependencies. - This is achieved through model synchronisation enabled by model transformation - A joint-cognitive approach. For example: the tool analyses elements being affected by a change while user decides how to make consistent changes to the affected elements. - MapleMBSE clearly has the capability for capturing in-model dependencies, but what about cross-model dependencies? ## References - [1] Ji, S., Wilkinson, M., & Dickerson, C. E. (2022). Structure Preserving Transformations for Practical Model-based Systems Engineering. To appear in 8th IEEE International Symposium on Systems Engineering, ISSE2022, arXiv preprint https://arxiv.org/abs/2209.07935 - [2] Hettel, T., Lawley, M., & Raymond, K. (2008, July). Model synchronisation: Definitions for round-trip engineering. In *International Conference on Theory and Practice of Model Transformations* (pp. 31-45). Springer, Berlin, Heidelberg. - [3] Dickerson, C. E., & Ji, S. (2021). *Essential Architecture and Principles of Systems Engineering*. CRC Press.