
eds.com

Driving business agility with Model Driven Architecture
An emerging approach for cost-effective, reliable and rapid application development

Model-Driven Architecture (MDA) is currently one of the most exciting approaches

for accelerating code development and improving the quality of software in complex

systems. MDA combines computer-aided verification and machine intelligence during

modeling to discover and remove design bugs before code reviews and testing.

The upshot: Companies can save significant production time and costs — and gain

the business agility they demand.

p o s i t i o n p a p e r : a c c e l e ra t e d d e v e l o p m e n t

Author:

Steven Witkop
Information Specialist
Ohio/Pennsylvania Solution Centre
EDS

Table of Contents

Introduction 1

The advent of
Model Driven Architecture 1

The role of Object
Management Group 1

Not just another
accelerated approach 2

The Pet Store
reference application 2

Generating the
sample application 2

Making changes 3

Adding the finishing touch 4

Taking stock of efficiencies 4

Optimizing today’s assets
for tomorrow 4

Building agile and adaptable
IT — for bottom-line benefits 5

Deciding whether or not
to adopt MDA 5

Conclusion 6

2

< 1 >

Acce lerated deve lopment

very effectively. It was easier and faster

for developers to write the code themselves.

Over time, however, as computers increased

processing speed and compiler tech-

nology improved, developers started using

compilers and became far more produc-

tive. Today, programming business applica-

tions in machine code is virtually unheard

of because it would be less productive by

an order of magnitude.

The role of Object
Management Group
Those who design computer systems —

whether for banks or battleships — face

several choices. When they’re interested in

protecting investments in existing technol-

ogy and maximizing flexibility, they choose

hardware and software that implements

and uses open standards. Open standards

enable companies to run or interoperate

multiple programs that were originally

designed to work only on specific plat-

forms. Given today’s rapidly changing,

multi-vendor computing environment —

evidenced by the adoption of software

platforms such as J2EE and .NET — the

use of open standards makes sense.

How can organizations ensure their

mission-critical information systems are

rooted in standards that will adapt to new

hardware capabilities and software platforms?

The Object Management Group (OMG)

The advent of Model Driven
Architecture
Model Driven Architecture (MDA) is about

using modeling languages as programming

languages. Modeling languages enable us

to program systems at a higher level of

“abstraction” than is possible by using

languages such as Java and XML.

Through the abstraction process, develop-

ers hide all but the relevant data in the

system’s code — thereby reducing its com-

plexity and increasing development pro-

ductivity. Abstraction also increases the

system’s longevity because the system’s

specifications are less tied to the underly-

ing computing environment, which is

always in flux.

MDA is part of a broad effort across the

computer industry to raise the level of

abstraction in how we develop systems.

This is not the first time the industry has

raised the level of abstraction to improve

productivity; it did exactly this during the

transition from assembly language to

third-generation languages (3GLs).

The change to 3GLs didn’t happen

overnight, though. The industry experi-

enced some teething problems along the

way. At first, 3GL compilers (the programs

that turn hand-written source code into

machine code that a computer can process

and use) didn’t produce the machine code

addresses this reality with MDA. MDA

addresses the challenges of today’s highly

networked, constantly changing systems

environment by providing an architecture

that ensures the following:

• Portability — by increasing application

reuse and reducing the cost and com-

plexity of application development and

management, now and into the future

• Cross-platform interoperability — by

using rigorous methods to guarantee

that standards based on multiple

implementation technologies all imple-

ment identical business functions

• Platform independence — by greatly

reducing the time, cost and complexity

associated with retargeting applica-

tions for different platforms (including

those yet to be introduced)

• Domain specificity — through domain-

specific models that enable rapid

implementation of new, industry-

specific applications over diverse

platforms

• Productivity — by allowing developers,

designers and system administrators

to use languages and concepts they’re

comfortable with, while allowing seam-

less communication and integration

across the teams

Introduction

Getting mission-critical enterprise applications up and running fast — and ensuring they do the job they’re designed for
over the long-term — is key for an enterprise’s success. But doing so is often easier said than done. And that’s where an
evolutionary approach to rapid application development known as Model Driven Architecture (MDA) can pay big dividends.
Since MDA keeps business domain code loosely coupled with platform-specific code, it gives enterprises the flexibility and
agility to evolve business requirements independently from technology. The approach also helps companies maximize
their investments in existing technology.

Let’s examine the approach in more detail. After addressing its history from the industry perspective, we’ll showcase its
usefulness through a practical example. We’ll conclude by listing five ways MDA can help enterprises move with agility.

MDA represents an evolutionary step forward

from previous development approaches.

It’s built on the solid foundation of well-

established OMG standards, including

Unified Modeling Language (UML), the

ubiquitous modeling notation used and

supported by every major company in the

software industry, and XML Metadata

Interchange (XMI), the standard for storing

and exchanging models using XML.

For more information about Model Driven

Architecture, visit the Object Management

Group’s Web site: http://www.omg.org/mda

Not just another
accelerated approach
Most new development approaches today

address ways to accelerate application

delivery. Yet not all of these approaches

are alike. The model-driven approach

focuses on developing domain models and

using machine intelligence to generate

code; other approaches concentrate on

complex modeling and rely on platform-

specific skills and dexterity. More impor-

tantly, model-driven development offers

organizations tangible productivity

improvements over previous approaches.

The Pet Store
reference application
To showcase the practicality of the model-

driven approach, let’s examine the steps

involved in generating a working application.

This example uses OptimalJ by Compuware

as the tool for generating the model

because OptimalJ supports MDA in its

entirety. In addition, the example uses

Java Pet Store reference application as

the target application to allow for compar-

isons with manually developed versions.

The Java Pet Store is a sample application

developed by Sun to illustrate the guide-

lines and patterns discussed in its Java

Blueprints. The Java Pet Store models a

typical e-commerce application (an online

pet store). Numerous J2EE application

server vendors implement this sample

application to prove the compatibility of

their products with the J2EE architecture.

Generating the sample
application
Creating a J2EE application with a model-

driven tool like OptimalJ is a three-step

process. Each step follows the MDA

approach, as shown in the figure below.

< 2 >

Acce lerated deve lopment

Technology
Patterns
Technology
Patterns

Implementation
Patterns
Implementation
Patterns

Domain
Model

Application
Model

Code
Model

Domain
Patterns

Domain
Patterns

Application
Patterns

Application
Patterns

Code
Patterns

Code
Patterns

Transformation
Patterns

Functional
Patterns

MDA represents an

evolutionary step forward

from previous

development approaches.

Figure 1: Three-step modeling process using OptimalJ

< 3 >

Acce lerated deve lopment

Step one: Domain model

The first step is to create a business-

centric domain model. There are three

ways to do so:

• Import an existing (UML) model using

the standard XML Metadata

Interchange (XMI) file format.

• Reverse-engineer an existing data

source to generate the domain model.

• Develop the model from scratch.

At this point, the domain model is void of

any technology platform-specific features.

The freedom to model without the plat-

form specifics simplifies the modeling

process and enhances the future value

of the model.

The model is then automatically checked

for compliance with Unified Modeling

Language (UML) standards.

Step two: Application model

Step two uses the business model from

step one and transformation patterns to

create a J2EE platform-specific applica-

tion model. At this point, architects and

designers have the opportunity to influ-

ence the solution domain by modeling the

platform-specific tiers (Web tier, EJB tier,

DBMS and integration tiers). For example,

they can model complex views of the busi-

ness as business services. At this point,

they also integrate legacy systems and

add Web services.

Step three: Code model

Step three uses the platform-specific

application model and code model to

generate the Java code that will be used

to run the application.

Results

After completion of the domain model,

it took less than 30 minutes to create

the application model, generate the code,

compile, deploy and start testing.

The accelerated development process

resulted in a working J2EE application

that can functionally manage the business

domain. From this point forward, develop-

ers can use OptimalJ to create, update

and remove business domain objects and

the relationships between them — all

without handcrafting any code.

The generated code for the user interface

tier includes functional Java Server Pages

(JSP) built using the Struts framework.

Struts is a popular presentation framework

that has been embraced by the Java

development community.

OptimalJ also produced the necessary

configuration and deployment files. As

a result, hand-coding in effect starts

in maintenance mode, instead of

from scratch.

Making changes
Changing a J2EE application can be a

difficult and cumbersome task. A simple

change — such as adding an attribute to

an entity — entails multiple different file

changes. All the changes can lead to

multiple errors. Many of them won’t be

detected, even at compile time.

With OptimalJ, a developer simply adds

the new attribute to the domain model

and regenerates the application. OptimalJ

sees to it that all the different file changes

are done automatically and free of errors.

This process ensures that your business

rules are intact, easy to validate and

easy to test.

After completion of

the domain model,

it took less than

30 minutes to create

the application model,

generate the code,

compile, deploy and

start testing.

Optimizing today’s assets
for tomorrow
Model-driven tools are more flexible than

code generators of the past. As new tech-

nology standards appear, developers and

vendors simply create updated templates.

To examine how well OptimalJ handles

new standards, developers generated two

versions of the sample application. One

version used EJB 1.1 API standards. The

other version reused the original domain

model and used EJB 2.0 API standards.

The result: An upgrade to EJB 2.0 that

would have taken several months to do

manually took less than 30 minutes with

the model-driven approach. This clearly

demonstrates how MDA protects existing

investments in the domain models while

leaving the door open to the benefits of

innovative new technologies. The MDA

out-of-the-box experience afforded by

OptimalJ also proves that it’s possible to

deliver complex technology solutions using

business model abstractions today.

The chart shows that the MDA approach

enables companies to develop complex

applications with a very small amount

of manual effort. In fact, benchmarking

(through MDA scenarios like this one)

shows that developers write only one to

four lines of Java code manually for each

200 lines generated automatically.

< 4 >

Acce lerated deve lopment

14%

76%

6%

4%

Front-End JSP
Front-End Java
EJB Java
Configuration

Figure 2: Percentage of time needed for different types of code development

Figure 3: Lines of handcrafted code (application version comparison)

610

3484

14273

535

1881

5891

45
863

5404

0
684

412 30
56

2566

0

2000

4000

6000

8000

10000

12000

14000

16000

Total Lines
of Code

User
Interface

Tier

Middle Tier Data Tier Config

Lines of Handcrafted Code

J2EE Pet Store Using OptimalJ

.NET Pet Shop

J2EE Pet Store

Adding the finishing touch
With OptimalJ, developers can use several

Web front-end development tools to chisel

in the final look. In this example, the devel-

opers used Macromedia Dreamweaver to

complete the front end of the reference

application. In this way, they made the pet

store they had created using OptimalJ

look and behave the same way as the

Java Pet Store created by Sun.

The pie chart depicts the percentage of

time developers spent writing different

types of code for the application. As shown

in Figure 2, almost 90 percent of the

effort is in developing the front end. Most

back-end development (for EJB Java and

configuration) was handled automatically.

Taking stock of efficiencies
The bar chart below compares the amount

of handcrafted code created for two ver-

sions of Pet Store reference application and

the MDA version generated with OptimalJ

(EJB 1.1). For this comparison, the User

Interface Tier Java code was counted (not

JSP); lines of code for the administration

functionality and the mailer application

weren’t counted — this functionality isn’t

included.

< 5 >

Acce lerated deve lopment

Building agile and adaptable
IT — for bottom-line benefits
IT leaders are dealing with the increasing

complexity of new technology, legacy inte-

gration and changing standards. At the

same time, IT managers are facing specific

obstacles that keep them from delivering

solutions with high velocity. Obstacles

include high project startup and collabo-

ration costs, inefficient stakeholder

collaboration, constant changes in tech-

nology, and other development activities

that have nothing to do with quality code.

MDA helps organizations achieve agile

and adaptable IT so they can overcome

these various business challenges. Through

this evolutionary approach, collaborative

teams can enjoy a wide range of compelling

business benefits:

• Reduced development time for new

applications

• Reduced cost throughout the applica-

tion life cycle

• Improved application quality

• Increased return on technology

investments

• Rapid inclusion of emerging technology

benefits into existing systems

Deciding whether or not
to adopt MDA
Despite all of its potential benefits, MDA

isn’t for every project. Here are some gen-

eral considerations to keep in mind:

• The approach works best for large

enterprises. (EDS believes that most

large enterprises will adopt MDA

principles.)

• Early adopters are organizations that

have significant experience with UML

modeling or that are starting new

projects.

• Enterprises that implement MDA must

do so only at the beginning of projects —

never when they’re under way or nearing

completion.

• Companies that need or want the

agility to evolve their business require-

ments independently from their IT will

also find the approach beneficial.

MDA helps organiza-

tions achieve agile

and adaptable IT so

they can overcome

these various

business challenges.

Conclusion
If the MDA approach seems right for your

enterprise — offering the time and cost

savings that you’re looking for — then give

it careful thought. When applied well, MDA

promotes demonstrable improvements in

enterprisewide business agility. And that’s

a real key to success in today’s volatile

economy.

< 6 >

Acce lerated deve lopment

About the Author
Steven Witkop is a full-time developer

for EDS. He received a bachelor’s degree

in MIS from Temple University in Phila-

delphia and a master’s degree from

Walsh University near Detroit. He is a

Sun Certified J2EE architect, developer

and programmer. Steve works in Detroit,

Michigan, and has 12 years of application

development experience.

< 7 >

Acce lerated deve lopment

About EDS

EDS, the world’s largest independent information technology services company, provides strategy,

implementation, business transformation and operational solutions for clients managing the business

and technology complexities of the digital economy. EDS brings together the world’s best technologies

to address critical client business imperatives. It helps clients eliminate boundaries, collaborate in new

ways, establish their customers’ trust and continuously seek improvement. EDS, with its management

consulting subsidiary, A.T. Kearney, serves the world’s leading companies and governments in 60

countries. EDS reported revenues of $21.5 billion in 2002. The company’s stock is traded on the

New York Stock Exchange (NYSE: EDS) and the London Stock Exchange. Learn more at eds.com.

Let’s begin the conversation

Corporate Headquarters

United States
5400 Legacy Drive
Plano, Texas 75024
1 800 566 9337

Regional Headquarters

Asia Pacific
33rd Floor, Citibank Tower
Citibank Plaza
3 Garden Road
Central
Hong Kong
852 2867 9888

Level 34, 100 Miller Street
North Sydney
New South Wales 2060
Australia
612 9025 0777

South Tower 68-86 Jervois Quay
PO Box 3647
Wellington
New Zealand
64 4 4950400

Canada
33 Yonge Street
Toronto, Ontario
M5E 1G4
Canada
1 416 814 4500
1 800 814 9038

Europe, Middle East and Africa
4 Roundwood Avenue
Stockley Park
Uxbridge
Middlesex UB11 1BQ
United Kingdom
44 20 8848 8989

Latin America
Avenida Presidente Juscelino
Kubitschek, 1830
5th Floor — Tower 4
04543-900
São Paulo
Brazil
55 11 3707 4100

EDS and the EDS logo are registered trademarks of Electronic Data Systems Corporation. All other brand or product names are trademarks or registered marks of their
respective owners. EDS is an equal opportunity employer and values the diversity of its people. Copyright © 2003 Electronic Data Systems Corporation. All rights reserved.
06/2003 3GCLL3302

