
Client Success Story

CGI
When CGI needed to dramatically increase productivity during
a multi-million dollar development project, they decided to
take an MDA™ approach. CGI selected Codagen.

Founded in 1976, CGI is the fourth
largest independent information

technology services firm in North
America, based on its headcount of
13,700 professionals. CGI provides
end-to-end IT services and business
solutions to more than 3,000 clients
worldwide from more than 60 offices.
The annualized revenue run-rate
totals CA$2.1 billion (US$1.3 billion),
and its order backlog currently totals
CA$10.7 billion (US$6.7 billion).

The Mandate
The systems of one of CGI’s largest
customers would have to be re-created
from top to bottom using new technology.
The effort estimated for completion of
this mandate is over 50,000 person-days,
with delivery occurring within three
years.

To address this sizable challenge, CGI
has built on the expertise and synergy
between themselves and the customer.
The CGI team has implemented best
practice-based methodologies and has
adopted tools that yield increased levels
of productivity in terms of overall project
realization, development, analysis,
testing, etc. Because there is a three-year
window for development, both staffing
and the development effort itself are
mission-critical issues; however, CGI
recognizes the strong probability that the
technologies chosen will evolve, creating

“I never saw a
tool that could

really carry
out the code

generation I was
looking for in

the past. When
we understood
Codagen and
realized it was

completely
different from

the others in the
market, it was

like ‘Wow!’ We’ve
been waiting for
this kind of tool

for years.”

– David Bertrand,
Technology
Architect, CGI

training issues as well as integration
and interoperability restrictions. With
strong insight into these challenges, CGI
decided to use the Object Management
Group’s Model Driven Architecture
(MDA) approach. MDA works by
effectively separating the business logic
of an application from the infrastructure
in which it is deployed.

The Paradox
Approximately 60 people are working
on the project. A team of six is in charge
of the core development process, with
the rest involved in the architecture,
the requirements management, and the
business analysis. More developers will
be added soon, and most development
will remain in house. Finding the
required skills in the market has become
difficult, and because Java programming
is typically done manually, CGI has come
face-to-face with an inherent paradox—
How can they achieve the high levels
of productivity required to meet the
deadline but still keep the development
process, architecture, design, ownership,
and testing in house? They scrutinized
the development process and decided
that code automation was the solution.
To increase productivity and accelerate
time to market, CGI suggested Codagen,
an MDA standards leader. That strategic
decision would prove to save over 30% of
the customer’s development costs.

ROI CALCULATION
Total Development Cost without Codagen $8,073,450

Total Development Cost with Codagen $5,474,700

Savings $2,598,750

Cost Reduction 32.2%

The Race to Productivity
Four automation tools were available on the
market. Using a proof of concept to conduct
benchmarking tests on the J2EE platform, the
company rated each tool on key criteria:

• Installation/
configuration

• Learning curve

• Ease of use

• Productivity gains

• Performance

• Flexibility

• Compatibility with
J2EE

• Java compatibility

• Quality of code
generated

• Cost

• References

• Potential ROI

• Client support

• Company
momentum

The clear choice was Codagen’s tool,
Codagen Architect. After seeing CGI’s organic
architecture, the framework, and patterns,
Codagen’s specialists provided CGI with
several pre-built, custom templates. “We
implemented the tool with their help, and
in a week, we were up and running,” said
David. “In terms of the learning curve, the
implementation went so fast—we had one day
of training and the transfer of the templates
they built for us—the next week we were
generating code.”

Development Environment
CGI’s development environment is deployed
on a Windows 2000 platform and integrates
a set of tools that support the development
process based on Rational Unified Process
(RUP) methodology. Rational tools are used
for requirements management, configuration/
change management and modeling. Their
IDE is IBM’s WebSphere Studio Application
Developer (WSAD, the new generation
of Visual Age for Java/ IBM), and they use
WebSphere Application Server as a J2EE
application server.

For code generation, CGI has integrated
Codagen Architect. After the business
modeling is done at an analysis level, the design
is realized, the link is established between the
Rational Rose model and Codagen templates,
which encapsulate all of CGI’s architecture
frameworks and design patterns, at which point
JAVA code is generated. This is fully integrated
and is now in production.

Faster Pace, More Control
CGI has found that one of the biggest impacts
of working with Codagen is that they can
encapsulate their J2EE framework within
their Codagen Architect templates and
generate code, so developers need only know
how to code Java, not the J2EE patterns and
frameworks. This puts CGI way ahead in the
development game. If they had to develop
everything by hand, everyone would have to
know the J2EE framework.

Furthermore, CGI wanted a kind of “white
box™” solution that would provide total
control over the architecture, not a solution
based on proprietary frameworks or business
rules (Codagen Architect uses templates
which provide total control of the generated
code). CGI writes their own frameworks and
design patterns and implements them in
the templates; through the models, the tool
generates all the code. “The only mistake I
can make is if my template isn’t that good…”
stated David. “We have a layered architecture,
and each layer has frameworks and patterns.
Through (Codagen) we are able to generate
50–60% of the code—I have complete control.”

“We’ve had great support [from Codagen].
The technical staff and technology are amazing. Everyone’s working in
the same way to ensure customer success. If there’s a problem, they
resolve it very quickly. It’s a bit clichéd, but it’s a win-win relationship

between our companies,” says David.

“I had planned
a month and a

half to build the
templates, but
in two weeks,

we were up and
running.”

– David Bertrand

• The graphic presented is an adaptation of the Rational Unified Process (RUP) which is commonly used in large
organizations.

• Using Codagen Architect reduces the effort associated with almost all lifecycle activities.

• Codagen Architect also increases the quality of the resulting application by promoting reuse, thus ensuring quality
of code and reducing software defects (bugs).

• Codagen Architect allows for much better maintenance and evolution of an application by letting you introduce
new technologies/versions (DB, app server, etc.) and propagate the required glue code throughout the application.

• This means Time + Cost savings of about 30%.

one week saves $3,080. In the second quarter
of 2002, three fewer developers were needed,
saving $110,880. In the first quarter of 2003,
only 12 testers will be needed instead of 20,
saving $295,680. This more than covers the
cost of Architect—in fact, CGI estimates the

ROI on the tool at over 700% after just the
first iteration. As David put it, “We gained
productivity for sure—major gains.”(For a
breakdown of time savings in the development
process, see the Appendix.)

The Bottom Line: Results That Add Up
Given CGI’s concerns about staffing,
automating production of more than half
the code has an enormous impact. “Now
I don’t need to seek J2EE experts, just
Java developers. That saves a lot of money,
especially since J2EE developers and
programmer/analysts with practical experience
are very rare on the market.” With Codagen
Architect, the J2EE patterns and frameworks
become transparent to Java developers, and
everything gets translated through the code
generator. This makes customer’s deadlines
much more realistic—and results in serious
savings.

CGI estimates their average cost for design,
development, and testing at $77 per hour.
Fewer software testers and developers will
be required over several quarters in 2002 and
2003. Reducing the effort by one person for

“It delivers more than we
expected.”

for
more

information,visit
www.codagen.com
or call 1.877.codagen

����

��������

������������ ��������������� ������������ ���� ������� �����������

�������

�����������������������

��������������������

© 2002 Codagen and Code Pockets and White Box are trademarks of Codagen Technologies Corp.
All other company and product names are the trademarks or registered trademarks of their respective
companies. 2002/09

Without Architect With Architect Savings

Business Modeling
Capture business vision 20 20 0%

Define business rules 50 50 0%

Define scope 30 30 0%

Develop business use case model 75 75 0%

Total 175 175 0%
Requirements Management
Understand stakeholder needs 150 150 0%

Analyze the problem 200 200 0%

Define the system 250 250 0%

Manage the scope 100 100 0%

Refine the system definition 150 150 0%

Manage change 50 50 0%

Total 900 900 0%
Analysis and Design
Define a functional architecture of the system 200 200 0%

Detail the analysis packages 100 100 0%

Realize the use cases 150 150 0%

Detail the analysis classes 100 100 0%

Analyze the data needs 50 50 0%

Refine the system architecture 200 50 75%

Detail the subsystems and their interfaces 300 100 67%

Realize the interfaces of the subsystems 200 50 75%

Finalize the design classes 50 25 50%

Define the physical data model 100 100 0%

Total 1450 925 36%
Implementation
Define the implementation model 20 20 0%

Define the integration plan 20 20 0%

Carry out template implementation and code generation 0 50

Integrate each subsystem 100 50 50%

Develop specific code and execute unit test 400 150 63%

Total 540 290 46%
Test and QA
Develop a plan for functional tests 30 30 0%

Design functional tests 150 150 0%

Execute functional tests 350 200 43%

Total 530 380 28%

TOTAL 3595 2670 26%

Appendix

Codagen Architect in your development process

Process Time with and without Codagen Architect

