
Engineering Software Engineering

by Hans van Thiel

MDA pioneer and author Anneke Kleppe:

“The essence of Model Driven Architecture is its potential for automated model transformation.”

Anneke Kleppe has been involved in OMG standardization of the Unified Modeling Language (UML),
in particular the Object Constraint Language (OCL), since 1995. She has co-authored several books on
UML and OCL and recently one of the world’s first books on the Model Driven Architecture (MDA).
MDA is a framework, introduced by the OMG, to facilitate software development by utilizing abstract
hierarchical models. Eventually, Kleppe predicts, it will become possible to transform generic models
into working code by ‘just pressing a button’.

Maybe because UML is a graphical language and
OCL is not – it’s a formal notation for stating
object properties - OCL is less known and less
widely used in the modeling of software systems.
However, it has been part of the UML standard
from the beginning and OCL 2.0 has officially
been adopted by the OMG in 2003.
Two main contributors to OCL are Dutch soft-
ware engineers Jos Warmer and Anneke Kleppe,
who have jointly published a book about OCL in
1999 and a new one about the 2.0 version in late
2003.
In daily life Anneke Kleppe runs her own com-
pany, Klasse Objecten, which specializes in
object oriented consultancy, training and design.
Also in 2003, Kleppe and Warmer co-authored -
this time also with Wim Bast of Compuware –
‘MDA Explained, The Model Driven
Architecture: Practice and Promise’.
MDA has been introduced in 2001 by the OMG
staff as a framework for software development,
using a hierarchy of software models with dif-
fering degrees of genericity and specificity. It has
been and still is actively promoted by the OMG
organization and it has been successfully
deployed in several large software development
projects.
‘MDA Explained’ is one of the first books to
appear about this new paradigm which, according
to Anneke Kleppe, will dramatically change
software engineering in the decade to come.

Can you say something about the history and how
you became involved in OMG standardization?

Until 1995 I was employed at the research
department of Dutch telecoms company KPN,
and I figured the future would be in object
orientation. So, in 1995 I started my own
company, Klasse Objecten. At that time Jos
Warmer was working on the first version of the
UML standard on behalf of IBM. We cooperated
on this and that, and the result was our book on
OMT (in Dutch, HvT) on the one hand and my
contribution to that first UML version on the
other. We also wrote a book about UML and its
use (also in Dutch, HvT). It’s little known that we
were involved in defining that first UML version
but the standard carries our names to prove it. Jos
has worked at Klasse Objecten as well, from 1999
till 2002.

Throughout ‘MDA Explained’ you use a small
catering company as an example. The modeling
hierarchy consists of one platform independent
model (PIM) with three platform specific models
(PSM) beneath it. The first PSM is relational, the
second is EJB (Enterprise Java Beans) oriented
and the third is web based.
The PSMs transform to respectively SQL (System
Query Language), EJB and JSP (Java Server
Pages) source code. How does this explain
MDA?

In MDA you always start with a platform
independent model. In the example this is a
model which is transformed into a system with a
three tier architecture, i.e. three platform specific
models and underneath them three ‘source code
models’. The code of a system or subsystem is
essentially also a model. The database com-
municates with the middle tier and this in turn
with the web server, so you have to model these
communications in your PSMs as well.
The system for the ‘breakfast service company’ in
the book has been implemented in OptimalJ from
Compuware. The tool and the example are
available on the Klasse web site.
The promise of MDA is that you can automate
such model transformations, including all kinds
of variations and intermediate models. Think of
tools that can accept parameters for trans-
formations.
MDA is about automating automation and its
value lies in such tools for model transformations.

Do you mean automatic transformations between
e.g. Java and C++ and vice versa?

No, not in particular, because such transforma-
tions are not enough. It’s not about Java or C++
or SQL but about different PSMs that are required
to work together. It’s about a whole of platform
specific models that together result in a particular
architecture. A platform independent model will
have to be transformed into several PSMs. The
better tools now are able to do this, partially.
The word ‘platform’ is often understood to mean
‘implementation’ but in my view it should be
used more in the sense of ‘architecture’. So, a
PIM could specifically be modeled into a three
tier or a five tier architecture, or something else
altogether.

UML tool providers often mention ‘round trip
engineering’. When you look at it more closely,
it’s usually limited to simple stubs or signatures
of operations.

But that’s not the tool provider’s fault – it stems
from the limited expressiveness of the modeling
language. The OMG is now working on an
executable version of UML, an extension within
which you can specify bodies of operations.
Furthermore, work has started on QVT (Query,
View and Transformation), a language for
specifying transformations. Neither will be
available in the near future, though.
There is a UML Action Semantics, based on the
Action Specification Language designed by
Kennedy Carter in the UK. This is also an official
OMG standard which allows for executable UML
models, but in my view ASL is too close to the
hardware to use with MDA.

How about OCL?

The second version of OCL has been greatly
extended and it has now become a complete
query language. With OCL you can express
values in a system and compare them to other
values. So you can state pre- and postconditions,
initial values, how values are derived from others,
the body of query operations and so on. In UML
it’s often not clear how objects relate to each
other and for this OCL is quite useful.
Actually you’d need two OCL extensions to be
able to specify actions on a sufficiently high
abstraction level and these are assignment and the
creation of a new object.

Late 2003 you wrote a plug-in for the open
source Eclipse development environment. Is this
‘Octopus’ open source as well?

Yes, we’re taking some time to clean up the code
and document it thoroughly, but as of June 2004
it will be open source. Octopus is a tool which
supports the new version of OCL. We found that
most tools don’t support OCL very well and by
working in an environment like Eclipse we can
promote world wide use of OCL ourselves.
Additionally, we’re now working on code ge-
neration based on OCL expressions.

Getting back to the relation between different
MDA models, working code included – how can
you ever get from a generic description to a
specific one automatically? Isn’t that almost a
self-contradiction?

Admittedly, every model is specific to some
extent. If you choose to use some class in your
model, then you do so because this is specifically
useful for this system. Even if only the name of
the class is known, the model is already specific.
But that doesn’t mean MDA has no merit. While
implementing a UML model, today, programmers
have to do a lot of things that are repeated again
and again. Like implementing an association, for
example. With MDA tools this dull work can be
automated.
MDA has just started but I really believe the time
will come when you can translate a platform
independent model into working code with just
one press of a button.

MDA is about models of models and this seems to
fit in well with the generic layering structure of
the OMG standards. Your book has an entire
chapter about those standards.

The OMG standards are indeed similarly
structured. With the MOF (Meta Object Facility)
you specify UML and CWM (Common
Warehouse Meta-model), with UML you specify
a UML model and that model specifies the system

you’re designing. The four layers, which are
denoted M0 to M3 within the OMG, allow for
transformations between all OMG specifications.
It may seem complicated, but it’s just like a class
and an object. As an object is an instance of a
class, so a system is an instance of a model. You
can regard the model as an instance of the
language and the language itself is an instance of
the MOF.
If you want to transform a platform specific
model in MDA - more accurately a platform
specific architecture - into another one, then you
can do so through the platform independent

model above it.
Such tools don’t exist right now, but that’s the
principle.

How do you see the future of MDA?

In my opinion the significance of MDA is com-
parable to that of object orientation, or database
technology before that, or compiler construction
even earlier.
MDA is a real paradigm shift in software deve-
lopment and engineering. Likewise it will, like
those others mentioned, take ten years or more to
fully reach its potential.

Anneke Kleppe may be reached at a.kleppe@klasse.nl

This article is an adaptation of an interview which appeared in Dutch language magazine
Computable, 37 - 6, p 14, 15 (6 February 2004) and is currently archived at
http://www.computable.nl/artikels/archief4/d06ms4dq.htm

Hans van Thiel is a technical writer and journalist who contributes regularly to IT magazines in the
Benelux. He can be reached at hthiel@compuserve.com

© 2004 Hans van Thiel

