F-16 Modular Mission Computer

Application Software

Achieving Cross-Platform Compatibility with
Increased Productivity and Quality: using the

LOCKNERD -rnn'rllr_'jfp' OMG’S MOdel Drlven ArChlteCture

Lauren E. Clark

Chief Engineer

F-16 Modular Mission Computer Software
Lockheed Martini Aeronautics Company

Bary D. Hogan

Methodology Lead

F-16 Modular Mission Computer Software
Lockheed Martin Aeronautics Company

© 2001 Lockheed Martin Corporation

Terry Ruthruff

Staff Specialist

Software Engineering Core

Lockheed Martin Aeronautics Company

Allan Kennedy.

President
Kennedy Carter Limited

Lockheed Martin Aeronautics Company

Agenda

Basic Software Components

Cross-Platform Compatibility: The Goal

The eXecutable MDA Approach:
— eXecutable UML Modeling
— Platform Specific Mapping (Design Tagging)
— Automatic Code Generation

Advantages of the eXecutable MDA Approach

Lockheed Martin Aeronautics Company

Basic Software Components

Application Software

Application Software Interface

Softwar e Execution

Platform . - =

Hardware

Application Software:

o High-level software that is unique to
the application(s) for which the
embedded computer (i.e. subsystem)
exists

e 80-90% of the total software (in terms
of long-term development cost)

Software Execution Platform:

o Low-level software, the purpose of
which is to allow the Application
Software to run on the hardware

Lockheed Martin Aeronautics Company

Software Execution Platform

Application Software

Application Softwargl nter face

Softwar e Ar chitecture .
Software Execution Platform:

Device Driver Operating System o Low-level software, the purpose of

which is to allow the Application
Software to run on the hardware

Board Support Package/BIT

‘Hardware

Lockheed Martin Aeronautics Company

Board Support Package / Built-In Test

Application Software

Application Software

Softwar e Archi tecture

Device Driv Operating System

Board Support Package/ BIT

Hardware

Board Support Package:

o Lowest-level boot software / firmware
that allows all other software (including
the Operating System) to be loaded
into memory and begin executing

o Unique to the hardware; and usually
delivered with the hardware (located
in some type of ROM)

Built-In Test (BIT):

o Low-level software that detects and
reports hardware errors

e Unique to the hardware; and usually
delivered with the hardware

Lockheed Martin Aeronautics Company

Operating System

Operating System:

Application Software

o Low-level software that, once booted,
manages all other software (this
management involving such things as
multitasking, memory sharing, 1/O
interrupt handling, error and status

Application Software I nterf reporting, etc.)

e Unique to the hardware (i.e. it must at
least be ported to each new hardware
platform); and sometimes delivered
with the hardware

Softwar e Ar chitecture

Device Driver Operating System

Board Support Packageigggj

Hardware

Lockheed Martin Aeronautics Company

Device Drivers

Application Software

Device Drivers:

o Low-level software that manages the
input from and output to the various
external devices in support of the
Application Software

Application Software I nter
Software Architecture

Device Drivers Operating System

e Unique to the hardware; but usually
not delivered with the hardware

Board Support Package/ BIT

Hardware

Lockheed Martin Aeronautics Company

Software Architecture

Application Software _

Application Software Interfa
Softwar e Architecture
Device Driver Operating System

Board Support Packaggzz{}

Hardware

Software Architecture;

o Low-level software providing the
framework within which the Application
Software executes

o Provides execution control, data /
message management, error handling,
and various support services to the

Application Software

e Assumes a particular Application
Software language

e Unique to the hardware; but, since it
must support all requirements levied
by the Application Software, is not
delivered with the hardware

Lockheed Martin Aeronautics Company

Application Software Interface

Application Software Interface:

e The boundary between the Application
Software and the Software Execution
Platform

Application Software

o The specified methods by which the
Application Software can make
requests and use the services of the
Software Execution Platform and the
Software Execution Platform can
provide its services to the Application
Software

Application Softwar e I nterface

Softwar e Archi tecture

Device Driv Operating System

o This interface is specified by the

Board Support Package/BIT Software Execution Platform

Hardware

Lockheed Martin Aeronautics Company

Cross-Platform Compatibility: The Usual Approach

Maintain a constant Application Software Interface

Portable

Application Software Application Software

Hold
Constant

Application Software I nter f Application Software | nter

Softwar e Ar chitecture

Softwar e Ar chitecture

Board Support Package/ BIT

Device Drivers ' ' Device Drivers ' Operating System
' Board Support Package/ BIT

S|atfiorm #1 ' Har dwar e Platform #2

Lockheed Martin Aeronautics Company

Cross-Platform Compatibility Issues

Can a constant
Application Software Interface
always be maintained?

Application Software

Consider...

o What if the language or operating

system becomes obsolete?
Application Softwar

o What if it is necessary to port even
a part of the Application Software

Softwar e Architecture

Device Drivers Oper ating System to a legacy platform not having the
resources to support the newer
Board Support Package/BIT Software Execution Platforms?

'Hardware Platform

Lockheed Martin Aeronautics Company

Cross-Platform Compatibility Issues

Even if it were possible, would one
__ always want to maintain a constant
Application Software Application Software Interface?

Consider...

o What if hardware or Software
Execution Platform changes could

Application Software I nter
_ provide more Application Software
B itcTe capability, but only by means of
changing the Application Software
Interface?

Device Drivers Operating System

Board Support Package/ BIT

Hardware Platform

Lockheed Martin Aeronautics Company

Cross-Platform Compatibility: The Goal

The goal
should be to provide
Application Software cross-platform compatibility
of Application Software
despite any.
Implementation,
or platferm specific, changes:

Application Software Irrll'gerface-ﬁ

Softwar e Architecture that iS, changes to
the Hardware Platform,
the Software Execution Platfiorm,
Board Support Package/ BIT or the
Application Software Interface

Device Drivers Operating System

dware Platform

Lockheed Martin Aeronautics Company

eXecutable MDA: Application Software Development

Reguirements
[Definition

e E Xecutable

> eX ecutable UM L VIBYY Approach

Modeling

o
Application
Software > Automatic Integration

|nteriace Code Generation & Test
Definition i

Lockheed Martin Aeronautics Company

eXecutable UML Modeling: Domain Model

3: Domain Model for Mission_Software::COM PX3.1 PD Start

|

File Edit “iew Operations Tools MNavigate Window Help

2 22 8 8 B/ a8 wibeE Kol Domain Model
(Package Diagram):

o The software application space

File Edit Yiew Operations Tools Navigaf

i Ll i 2w s mbeaw | IS partitioned into multiple
e | Pomanvosetormssin soware) - platform independent models

it [L:,»xr{h q:,-r,_ﬁ_.; N# v """""""""""""""""""" (Or domains)

s R
R Slbzs mee 0o Mappings between the
A =t/ | domains (bridges) are defined

it e r""

R ' o
e I J
R B ey T
T ’ i et ~
; -7 ~
- -
T =T [T | L% — -
- R ! - ~ ' a -
.- ' I - | o
Ep— I - = = - ~.
| T i . T we T H - - 1 -
. 0 L ST I AL
L | o -
3 i [!
N H i
N | '

,,,,,,,,,,,,

Pilot ¥ehiclke Interface

Lockheed Martin Aeronautics Company

eXecutable UML Modeling: Class Diagrams

2: Class Diagram for Stores Management::UML Test Version el

File Edit View Operations Tools MNavigate “Window Help 1 .
2] 29 @l W Belal® EH A Blel]s(sl 3 Cless DIEElms.

Station_?ﬂ{ect_ﬂelay [J Wlthln eaCh platform
Vissis independent domain model,

R3 1| $SF_Option_ID:RIU_Cond_Opti.
Missile_IDMissile_ID_Range ! —~pen_ —=ona_-pl produces analog

Yeapon [DiWeapon IDs provides routing of recefves analog aperatian: signals routed by CO n Ce ptu al e ntltl eS
Create Instance

%E‘Ecil?délﬂﬂagiﬁ\’vﬁﬁpo”JDS analog signalsto signals routed by Lredle o .
uantity:Stare_Gluantities elete_Instance .
Missile_StatusWeapon_System_Status are l I lOdeIed fl rSt.
Slave_Loop_Capable Boolean

Missile_Present:Boolean 1 R13 1

Station_Status:Station_Status_Type Uncage Circuit I b d
Store_MumberStore_Mumbers ‘ uncages is uncaged by g.ﬁm v C asses1attr| UteS’ an

MPRES _Status_IDRIU_Status_Gption_L. 1 R10 hissile_IDMissile I Range
Pre_Release_Option_ID:RIU_Cond_Cpt.

Post_Launch_Timer_IC:Timer_IDs ' allows slaving of Hg%iigle[)_:}lr\;’t?énﬁoolean aSSOC|at|0nS are abstracted

EIT_Capable:Boolean 0.1 is slaved by Uncage_Conditioning_Timer_ID:.
Mezdmum_EIT_Time:Integer

Missile In EIT Active:Eoolean Slave Rela operation:
Release_Pulse_Constructed:Boolean attribute Y Check_Uncaging_Conditions
SelectedBoolean Missile_IDMissile_ID_Range %{w:mgtam
Slave_Relay State:Conditioning_. ange_l.aging

o Behavior, though considered, is

i ; 1 - Delete_Subtype_Instance

S o AL Comg Dot not modeled explicitly in this
operation: Evaliate S ng’atioalt .

Create Missile _ _ 4%
IMissile_Present_Changed Sraigisetatugile?ecgizeld‘ons VIeW

_ _
Power_Up_Cccurred Delete_Instance

Delete_Missile
Evaluate_Zelection_Priority

Digital_Uncage_Circuitry Analog Uncage_Circuitry

Missile_IDiissile_ID_Range Iissile_|DMissile_ID_FRange
Slave_Enable:Boolean Uncage_Option_|I:RIU_Cond..

operation: operation:
Uncage_Status

Create Instance
Check_Uncaging_Conditions Create_Instance
Change_Caging Check_lncaging_Conditions
Delete_Subtype_Instance Change_Caging
Delete_Subtype_Instance

Lockheed Martin Aeronautics Company

eXecutable UML Modeling: State Charts

2: Class Diagram for Stores Management::UML Test Version

File Edit View Operations Tools MNavigate “Window Help

=l 1% gl 8 Belald BHEAH kYol B

Missile

Missile_ID:Missile_|D_FRange
YWeapon_|DWeapon IDs

Selected InstanceWeapon_|Ds
Gluantity:Store_GQuantities
Missile_StatusWeapon_System_Status
Slave_Loop_Capable Boolean
Missile_Present:Boolean
Station_Status:Station_Status_Type
Store_NumbaeSisssablalors
WMPRES_Stefiss

Pre_Releas
Post_Laun cI
EIT_Capahl

] R3 1

Station_Select_Relay

provicles routing of receives analog
analog signalsto signals routed by

1

Missile_IDMissile_|ID_Range
SER_Timer_ID:Timer_IDs
AlO_|DInteger

0.1

33R_Option_IDRIU_Cond_Opti.

operatian:

Delete_Instance

produces analog
signals routed by

LINCAMRS

3: State Machine for UML Test Version::Slave_Relay

File Edit “iew Operations Tools Navigate Window Help

Uncage Circuitry

j T oy

Bl@lalt 2iEaH ks o)

Release_Pu
Selected:Bo

Create Mis
Missile_Pre

Bower_Up

Pawer_lp_
Delete_Mis:
Evaluate_3t

Slave_Timer_Expired(Missile_ID)

Slave_Requested(Missile_ID)

Bore_Requested(Missile_ID)

Slave_Timer_ExpirediMissile_ID)

Slaving_To_Boresight h
entry /

Bore_Requesteditissile_I0)

Slave_Fequested(Missile_ID)

State Charts:

e Behavior is formalized during
state modeling

o Class lifecycles are modeled
using signal-driven state
machines

o Class operations are defined

Slave_To_Bore_RequestediMissile_ID)

Lockheed Martin Aeronautics Company

eXecutable UML Modeling: ASL

6: Instance State Details for Missile_Type_In_Launch::Post Release
“iew Operations Tools Navigate ‘Window Help

_le o

File Edit View Operations Tools MNavigate “Window Help

A% 8 8 Baa® AEnn Mol 22 S8 A A el e el o Action Specification Language:
Database : <Database Name>

Class : 36 Missile Type_In_Launch {TLCH) [State actions and CIaSS

State : Post_Release

Missie operations are specified using

— it] FIl Description
Missile_|DMissile_ID_Range Fost Release state actions

YWeapon_|IDMWeapon_IDs provides routing of o g A . S .f. .
Selected Instance’/eapon_|Ds analog signalstc | action a preCISe Ct|0n peCI |Cat|0n
Gluantity:Store_GQuantities ANT Instance = this -» RZd
Missile_StatusWeapon_System_Status ANM Instance = ANT Instance -> R11 L ASL
Slave_Loop_Capable Boolean ANT_Instance.Complex_Launch_Started = FALSE anguage
Iissile_PresentBoolean 1

Station_Status: Statmm Status _Type
Store Numk\n LINCACPS
i

state | [A, o ASL is a higher order and much

Post, Launcl File Edit ¥iew Operations Tools Navigate | else
EIT Capahl i i Local_Selectable Weapon Type = FALBE

M\asx;ﬁgurrnEllJ JJ J‘ ﬂ @@ﬂﬁ EI ;rb}%ignstance.Selectable_Weapon_Type = Local_Selectable | Simpler Ianguage than a typical

Release_Pu

SelectedBo Local_Missile_Status = ANT_Instance.Missile_Status high Order Ianguage (e.g. C++)

if Local_Missile Status = "8imulate” then
if ANM Instance != UNDEFINED then
URO_Instance = ANM Instance —> R13 —-» RZ3
generate UROJ:Cage_ Requested() to URD_Instance

gggéfate TLCHl:Launch:Completed() to thi; L4 ASL deals With ObjeCt Oriented

else

Power_Up o o
v A S BTN IR avaitaner concepts, not implementation
Delete_Mis: if ANM_Instance != UNDEFINED then b

Evaluate_3t [Hew ANM_Instance] = A8Md:8elect_Next Missile Foy

[ANT_Instance.f8elected A& Instance] t
generate ANMS:Release Consent Rescinded()] to ANM| Conce S

if New ANM_Instance != UNDEFINED and

Slave_Timer_Expired(Missile_ID) New_&NM_Instance.Missile_ ID != ANM Instance)

generate ANMd:Missile Deselected() to ANM_Inst ASL f t th UM L

generate ANMI:Missile Selected() to New . ANM i @ Con Orl I IS O e

unlink ANT_Instance RI1 ANM_Instance

link ANT_Instance R11 New_ ANM_Instance 0 o 0

generate " TLCHL :Launch Completed() to this P A t S t

o1l recise AClion semantcs

Slavi To B . generate ANMT:Missile Safed({) to ANM Instance
aving_lo_boresig [Timer_ID] = Create Tlmer[]

eniry / this.New Missile Selection Timer ID = Timer ID

generate TIMl:S3et Timer (this.New Missile Selection Timer ID, Y
150, ’MILLISECOND’, Event("TLCHZ2"), this)

[Type_Quantity] = ASMZ:Find_ Weapon Quantity([this.Weaporn

Create Mis
Missile_Pre

if
generate ASMLI4A:%3elected Weapon Quantity Changed (Type Quantity)
endif

#$8top flashing the flight path marker, and cutput MMLI36, CMM13Z, and CMM133
generate ASML3:Release Completed()

ol

Lockheed Martin Aeronautics Company

eXecutable UML Modeling: Simulation

Application Wiew Onptions Help | Sl mu I atl on:

aY

?Stupped : Platform 0 Domain ASM Scenario Setup DS_setup 2 ° Since a precise ACtion

3 Specification Language is used,

e models are executgble and
e therefore may be simulated

|
Breakpoints : fod | Addasl | ddEvent | Clear One | iUML Simulator — Ins!

= v o Simulation features resemble

iUML Simulator — ASL Code Eﬂr';"ﬂiig:nfw those Of a hlgh Order language
: i “ariahle Mame Walue debugger

Show ; Ohiject Assigners I

Stimulus Tirner External I

Type

PFlatform 0 Domain : ASM |aEP_instance [Instance UNDEFI
Scenario Setup : D5 _setup 2 Line : 23 [Mew_Slave_Profile |[Instanes DEFINE

T Variablesl |4HDP_instance [Instance UNDEF| o |\/|Od€|S may be Va“dated Iong

[Mew_Option_Profile || Instance [DEFINE

#16 ANOP_Instance = find-one Option Profile [AHRP_instance nstance | UNDEF! before they are imp|emented

#17 if ANOP_Instance = UNDEFINED then To——— [T

#18 Mew Option Profile = creat ; -
#19 Profile I0 = 1 % I iUML Simulat__
#20 & Cooling Option = ‘Warm

o1 & TD Option = "EE* Instance Hew_Slave Profile o |
#22 & Current_State = ‘Inact i s

#23 ——sendif Instance Mew_Slave Profile

#24
#25 Fd

#26 BMHP Instance = find-one Prof Mizsile
#07 if AN¥P Instance = UNDEFINED Frofile_IC LOS_Option FOw_Option Slave FReguested Auto_Mode Current_State Type

#28 New_Profile = create Profi 1 Slawe Spat TRUE FALSE Inactive
#24 Profile I0D = 1 %
#30 & Cooling Option = *GCool =

Lockheed Martin Aeronautics Company

eXecutable UML Modeling: Summary

eX ecutable UM L
Modeling

XUML models are a complete representation
of the application space (not a top-level or
preliminary design)

Modeling is performed using a Unified
Modeling Language (UML) representation

Modeling makes use of a precise Action
Specification Language (ASL) and Is
therefore executable (providing early
validation of the models)

Each xUML model is a Platform Independent
Model (PIM), or completely implementation-
Independent (i.e. Independent ofi the
hardware platfiorm, the software execution
platfiorm, and the application software
Interface)

Lockheed Martin Aeronautics Company

Design Tagging: Specifying the PIM to PSM Mapping

xUML Models

Design Tags

Class Allocation _
Program Allocation Sour ce Code Filles
Max Instance Count

Event Rate _
Event Queue Software Execution
Platform Specific

Throw Away
Initialization

Language

Specific

Automatic
Code Gene

Lockheed Martin Aeronautics Company

Design Tagging: Specifying the PIM to PSM Mapping

—-|2: Tag Group Details for UML Test Version::MN|

0

File Edit Wiew

] 2% Skl 8 Al

Operations Tooll

2: Class Details for UML Test Version:: Missile
File Edit “iew Operations Tools MNavigate Window Help

Database : <Databs
Domain : Btores
Yersion : 8: UML
Tag Group : MMC Cls

Description
MMC Code Generator Tags

Tags
Event Queue
Event Rate
Initialization
Maximum Instance Count
Persistent
oueued Event Count
Source Type
Subtvpe of
Throw Away
Zlass Allocation

ol 218 8l W Al k] B Lna] B

Database : <Database Name>

Domain ! Stores Management, ASM
Yersion ;8 UML Test Version
Class ;30 Missile

Description
The Missile object represents a missile that is 1
inventory.

Attributes
Missile ID
Telemetry Present
Safe To Release
Critical HW Passed BIT
AUR_Ready
Power_ Switch_ID
Power On Timer ID
Communication_Status
Digital aAutopilot On
Current Btate (Status)

Identifiers
1 {Generalisation R21)
Missile ID

(Preferred)

Exception Handling Code
<Exception Codex

Linked Requirements

Role Humber Hame

Attached Tags
Hame

(MM Class Des.
(MMC Class Des.

I Maximum Instan. .
. 1Persistent

(Capability/Co.
(MMC Program A.

L Include Missile
. JWME

Design Tagging:

e Design tag values represent
Implementation-specific design
decisions

e Design tagging is applied to,
but not embedded in, the xXUML
models (tags and tag values
may be included or excluded)

e Code Generator assumes the
most standard implementation,
such that only exceptions must
be tagged

Lockheed Martin Aeronautics Company

Design Tagging: Summary

Platform Specific
M apping
(Design Tagging)

Whereas xUML modeling is implementation-
independent, Design Tagging is implemen-
tation-dependent (i.e. specific to a particular
Application Software Interface)

Implementation-specific design decisions
(only those needed to support code
generation) are made during Design
Tagging, and are represented with design
tag values that are applied to the xUML
models

The most standard implementation is always
assumed by the code generator, such that
only exceptions must be tagged

Design Tagging Is everlaid on (not
embedded in) the xXUML models, such that it
may be included or excluded

Lockheed Martin Aeronautics Company

Automatic Code Generation: 3 Levels of Models

Level 3
Developed

by

Supplied by
Tool

Vendor
Level 1

Developed

by
Program

Implementation
Elements:
(e.g. Procedure, Array,
Program, Event

XUML Elements: Queue, etc.)

(e.g. Class, Attribute,
Association,

Application
Elements:

(e.g. Aircraft, Missile,
Target, etc.)

Lockheed Martin Aeronautics Company

Automatic Code Generation: Level 2 - Simulation Code

When we say that “xUML models are executable” we mean that
“executable code can be automatically generated from them”

Level 2

Supplied by
Tool

Vendor
Level 1
Developed

by Code Generation:
Program Generation of
Simulation Code
for Development
/ Platform
® (e.g. UNIX C Code)

XxUML Elements:
(e.g. Class, Attribute,
Association,
Application
Elements:
(e.g. Aircraft, Missile,
Target, etc.) Step 1: Populate instances
of xUML Metamodel with
Model of Application

iUML Simulator -

Platform 0 Domail

Scenario Setuy

Lockheed Martin Aeronautics Company

Automatic Code Generation: Level 3 - Target Code

Level 3

Developed

by
Program

Supplied by /
Tool | mplementation

Vendor

Code Generation:
Generation of
Developed Source Code
by for Target
Program / (Embedded)
Platform

/;W (e.g. Ada/C++ Code)

Level 1

Implementation
Elements:
(e.g. Procedure, Array,

Program, Event
XUML Elements: Queue, etc.)

(e.g. Class, Attribute,
Association,
Application Step 2: Populate instances
Elements:) of Model of Implementation
(e.g. Aircraft, Missile, with populated xUML
Target, etc.) Step 1: Populate instances Metamodel instances
of xUML Metamodel with
Model of Application

Lockheed Martin Aeronautics Company

Automatic Code Generation:

The Code Generator

Level 1
Developed

by
Program

Application
Elements:

(e.g. Aircraft, Missile,
Target, etc.)

Supplied by
Tool
Vendor

XxUML Elements:
(e.g. Class, Attribute,
Association,

Level 3
Developed

by
Program

| mplementation

Implementation
Elements:
(e.g. Procedure, Array,
Program, Event
Queue, etc.)

The Code Generator

Generated
Source Code
for Target
Platform

The Code Generator includes all implementation-dependent details

(those dependent upoen the Application Software Interface — specific to the
Hardware, the Software Execution Platiorm,, the Implementation Language)

Lockheed Martin Aeronautics Company

Automatic Code Generation: Code Generator Development

2: Domain Model for CCG::modifiable CCG Release 2.3 .4

File Edit “iew Operations Tools MNavigate Window Help . .
E T T T FERE TR R Configurable Code Generator:

Domain Model for CCG ;
o Code Generator is developed

using the same eXecutable
MDA strategy

b 1

1

.‘ e The Tool Vendor supplies a
Jeerinterece ML Formatsm Buld Management set of XUML models (known

| as the Configurable Code

—1 Generator) that serve as a
Tagging generic translation framework

1

Action Specification Language

B ! '
' N

i . . A I
' - !
' N ' S

N "

N \

'

. .
.
Parser . : Populator
~ "

P i . N
N
. i . . N
. i . . N
i .) X S

Format Services Error Handling iUML API

Lockheed Martin Aeronautics Company

Automatic Code Generation: Code Generator Development

2: Domain Model for CCG::modifiable CCG Release 2.3 .4

File Edit “iew Operations Tools MNavigate Window Help

%) Bl@lajs HEnH Hely 280 5

1

Platform Specific
Implementation

User Interface

1

1

1

MDA Process

L

1

XUML Formalism

Domain Model for CCG

Action Specification Language

1

W

Parser

.
.
L&

Build Management

Ry

Tagging

Populator

. ! [
1) L 1
) . |
" v |
§ il
.

)

Y

Format Services

Error Handling

iUML API

Code Generator Development:

e The Configurable Code
Generator may be adapted
to the meet the requirements
of any Platform Specific
Implementation (i.e. of any
Application Software Interface)

e Code Generator and
Application Software develop-
ment may be performed
concurrently

Lockheed Martin Aeronautics Company

Automatic Code Generation: Summary

Automatic

COd e Gener atl '”’332323

« Automatic code generation is simply an

extension of the code generation technique
used for simulation of the eXecutable UML
models on the development platform, this
extension being for the target (embedded)
platform

The code generator is developed within the
same environment as the application
software using the same eXecutable MDA
strategy

— Development cost: 1-2 architects

Nearly all implementation-specific design
tasks (all but the design decisions
represented by design tag values) are
performed by the code generator, not the
software developers

Lockheed Martin Aeronautics Company

Portable Application Software Products #

The Portable Products

(and therefore the Configured Products

to be placed in an Enterprise-Level
sutable UM L Software Reuse Library)

Application
Software
| nterface

R & S \/I

)
O
‘=
—
2
b
@
O
O
>

Advantages of the eXecutable MDA Approach

Increased Quality

Wie e Xecutabie

« The majority of software developers are
Isolated from implementation details,
allowing them to focus on a thorough
analysis of the application space

« Maintenance of the application source code

IS eliminated, while maintenance of the xUML
models Is ensured

» Defect injection (and the resulting rework) is
reduced by automating the software phase in
which most defects are injected

= On a typical program, after Requirements
Definition approximately 2/3 of the
defects are injected during
Implementation (coding)

Lockheed Martin Aeronautics Company

Advantages of the eXecutable MDA Approach

Increased Productivity

Wie e Xecutabie

» Rework is reduced

— Early validation through simulation
reduces rework

» Increase in eXecutable UML modeling
span time is more than offset by decrease
In Integration & Test span time

— Higher guality implementation (due to
automation) reduces rework

Software development span time is reduced
by automating the implementation phase

— Application Software development
schedule is reduced by at least 20%

— The code generator, not each software
developer, performs the majority of
Implementation-specific design tasks

s 40-60% of physical source code

Lockheed Martin Aeronautics Company

Advantages of the eXecutable MDA Approach

Cross-Platform Compatibility

« One Application Software xUML Model
database may be reused (as is) on any
platform for which a code generator is
developed

— XUML models are compatible with any
hardware platform, any Software

Execution Platform, and any Application
Software Interface

= XUML models are compatible with any.
Implementation language

The Goal of Cross-Platform Compatibility of Application Software
Is Attainable with the eXecutable MDA Approach

Lockheed Martin Aeronautics Company

Contact Information

Lauren E. Clark Lauren.E.Clark@Imco.com
Chief Engineer (817) 763-2748

F-16 Modular Mission Computer Software

Lockheed Martin Aeronautics Company

Terry Ruthruff Terry.Ruthruff@lmco.com
Staff Specialist (817) 763-3525

Software Engineering Core

Lockheed Martin Aeronautics Company.

Bary D. Hogan Bary.D.Hegan@/mce.com
Methodology Lead (817) 763-2620

F-16 Modular Mission Computer Software

Lockheed Martin Aeronautics Company.

Allan Kennedy allan @ke.com
President (+44) 1483 483 200

Kennedy Carter Limited

Lockheed Martin Aeronautics Company

