

Model Driven Architecture (MDA) FAQ

Q: What is the Model Driven Architecture (MDA) and how is it different from other
architectures?
A: The MDA is a new way of writing specifications, based on a platform-independent
model. A complete MDA specification consists of a definitive platform-independent base
UML model, plus one or more platform-specific models and interface definition sets,
each describing how the base model is implemented on a different middleware platform.

The MDA focuses primarily on the functionality and behavior of a distributed application
or system, not the technology in which it will be implemented. It divorces
implementation details from business functions. Thus, it is not necessary to repeat the
process of modeling an application or system’s functionality and behavior each time a
new technology (e.g., XML/SOAP) comes along. Other architectures are generally tied
to a particular technology. With MDA, functionality and behavior are modeled once and
only once. Mapping to the supported MDA platforms will be implemented by tools,
easing the task of supporting new or different technologies.

Q: Why is the OMG going in a new direction? What prompted it?
A: It’s not really a new direction, when you take OMG’s history into account. In 1997,
OMG expanded its scope to include modeling with the adoption of the Unified Modeling
Language (UML) and Meta-Object Facility (MOF). Although it has always been true that
UML models can be implemented on any platform, the continuing proliferation of
middleware “silver bullets” suggested that a platform-independent UML model is the
secret to software stability and ROI – a stake that remains fixed in the ground while the
infrastructure around it shifts over time. The MDA unites OMG’s well-established
modeling standards with not only CORBA but also every other middleware technology –
past, present, and future – to integrate what you’ve built, with what you’re building, with
what you’re going to build. Rather than focusing on yet another “next best thing,” MDA
raises the bar and designs portability and interoperability into the application at the model
level.

Q: What is the role of UML in the MDA?
A: UML is the key enabling technology for the Model Driven Architecture: Every
application using the MDA is based on a normative, platform-independent UML model.
By leveraging this universally accepted modeling standard, the MDA allows creation of
applications that are portable across, and interoperate naturally across, a broad spectrum
of systems from embedded, to desktop, to server, to mainframe, and across the Internet.

Q: What is the role of middleware platforms in the MDA?
A: In the MDA, a specification’s platform-independent base UML model is used to
define one or more platform-specific models and interface definition sets, each describing

how the base model is implemented on a different middleware platform. Because the base
model, platform-specific model, and interface definitions will all be part of an MDA
specification, OMG will adopt specifications for multiple middleware platforms as it puts
this new architecture into place. While CORBA’s platform and language independence
and proven, deployed transactional and secure nature continue to make it the best choice
for systems from embedded to desktop to Internet, MDA makes porting to, and
interoperating with, other middleware platforms easier and cheaper.

Q: What about CORBA, then?
A: OMG continues to promote and develop CORBA, and the CORBA market continues
to expand, particularly in real-time & embedded systems, and the large, mission-critical,
fault tolerant systems essential to enterprise computing. Because CORBA is the only
multi-platform, multi-language solution for systems integration, many enterprises will
use CORBA to build and integrate applications defined in the MDA.

OMG and its member companies have always recognized the value of interoperating with
other standards as well as proprietary platforms & languages. OMG created the
COM/CORBA interoperability specification in 1995 (for connections to Microsoft’s
proprietary desktop systems) and expanded it in 1997, and designed and constructed the
many ways that CORBA works with Java and XML. Amongst its other benefits, MDA
continues this work of defining cross-middleware interoperability, and will provide tool
support to speed and automate the process. This will be a great benefit to users who find
themselves supporting multiple middleware platforms.

Q: How does MDA enable cross-platform interoperability?
A: In the MDA, interfaces and implementations of a specification all derive from a
common base UML model. This structure of linked models allows automated building of
the bridges that connect implementations on those various middleware platforms. And,
when the base model for a new specification is being designed, interoperability with other
specifications and services can be designed into it.

Q: How does MDA compare or compete with Microsoft’s .NET or Sun's ONE?
A: MDA works at a different level than .NET and ONE. These are platforms, aimed at
specific albeit broad application targets, while the MDA is (as its name declares) a Model
Driven Architecture that works above the level of every middleware platform, .NET and
ONE included. A middleware platform is incorporated into the MDA as a platform-
specific profile. As ONE and .NET establish market share, OMG members will define
platform-specific profiles for them, allowing them to participate in the MDA along with
the other platforms which will almost certainly include Java/EJB, XML and one or more
protocols dictated by the industry or the marketplace (SOAP or XP), and others.

Q: Who is responsible for the MDA?
A: Although the original impetus for the MDA came from OMG staff, it is now
supported by the membership as demonstrated by unanimous votes of the technical
representatives attending the organization’s meeting in late February, 2001. Like all the
other work of the OMG, MDA was defined and will be developed by the OMG

membership which includes a diverse cross-section of computer vendors, software
suppliers, and many end-users. The wealth of experience contributed by these hundreds
of organizations is one of the great strengths of OMG’s process, and has been put to good
use in defining and refining the MDA. The initial vision was drafted in late 2000 in a
paper available at http://doc.omg.org/mda, and subsequently refined with the help of
many individual contributors into a technical perspective, available at
http://doc.omg.org/ab/1-2-4..

Q: What are the top three benefits of the MDA to enterprises trying to cope with
today’s computing environment?
A: There are many benefits to using the MDA approach, with the most important being:

• An architecture based on the MDA is always ready to deal with yesterday’s,
today’s and tomorrow’s “next big thing”.

• The MDA will make it easier to integrate applications and facilities across
middleware boundaries.

• Domain facilities defined in the MDA by OMG’s Domain Task Forces will
provide much wider interoperability by always being available on a domain’s
preferred platform, and on multiple platforms whenever there is a need.

Q: How will the MDA be delivered? In what kind of tools? And when?
A: Several key parts of the MDA vision have already been standardized, including not
only the UML, MOF, XMI and CWM, but also the first middleware mapping (to OMG’s
own CORBA). Several other major MDA foundation specifications are “in the chute,”
including a middleware-independent mapping for enterprise systems (called “UML for
Enterprise Distributed Object Computing”).

In terms of products, MDA will be implemented by modeling tools and we expect the
first generation to emerge late this year. Additional vendors’ products will join these soon
after, so that almost all OMG vendor members (and many non-members) will be
represented in the marketplace by products in about eighteen months.

The biggest benefit of MDA will be the generation of application code from an MDA
model through an automated or semi-automated series of steps. Although fully automatic
code generation is unlikely for some platforms, examples with limited scope are running
today and demonstrate the practicality of this vision. MDA tools will initially move
beyond modeling with the generation of code for interfaces (such as OMG IDL), for
functionality constrained by a specification such as the CORBA Component Model or
EJB, for wrappers around programmer code that make it transactional or secure, and for
operations that get and set the values of variables declared in the model. A subsequent
version may code execution of simple business rules.

Q: How is OMG doing, anyways?
A: OMG is bigger than ever, and doing well. With about 800 member companies, OMG
continues to be the largest software standards organization of its kind. There are more
systems deployed using OMG’s standards than ever, with new success stories appearing

http://doc.omg.org/mda

daily. Some recent examples include major design wins at a large airline reservation
system and two of the world’s biggest multinational automobile manufacturers.

In terms of the OMG standards process, there are now more adoptions in process than at
any other time in OMG’s twelve year history. Our meetings, which typically attract more
than 500 members and guests, regularly host industry workshops and co-host meetings of
other organizations.

Q: Will MDA adversely impact the CORBA-based product I've installed or plan
to install in the near future?
A: Absolutely not. First, OMG plans to continue support for CORBA at current levels at
least; demand from CORBA users in realtime, embedded, fault-tolerant, and enterprise
systems will actually increase the tempo of CORBA standardization. CORBA will also
be one of the most prominent platform-specific models in the MDA. MDA will make it
practical to either keep all of your CORBA applications and connect to other platforms,
or to port to them, as dictated by business factors.

