
 © Telelogic, Bruce Powel Douglass, Page 1

Telelogic. • 3 Riverside Drive • Andover , MA 01810 • Tel: 978-682-2100 • Fax: 978-682-5995 • http://www.ilogix.com

Model Driven Architecture and Rhapsody

Dr. Bruce Powel Douglass
Chief Evangelist

Telelogic

Model Driven Architecture and Rhapsody

Abstract
MDA, short for Model Driven Architecture, is a unification by the Object Management
Group (OMG) of the independent technologies of middleware and modeling. The
OMG owns the standards for both CORBA, the most prevalent middleware standard,
and the UML, the de facto standard language for software modeling. The OMG is
primarily concerned with interoperability of systems, in terms of both running on
distributed heterogeneous hardware (CORBA part) and the models (UML part). The
interoperability is primarily focused on the integration of legacy systems and systems you
plan to construct or integrate with in the future. The primary advantage of MDA is a
unified approach to the design and development of platform-independent systems that
can be easily ported from one environment to another and can be easily hosted on
heterogeneous environments.

Alphabet Soup – CORBA, UML, and MDA Basics
CORBA (Common Object Request Broker Architecture) is a powerful, mature
technology for constructing systems that are distributed across many, usually
heterogeneous, computing environments. This is accomplished through the application of
the Broker Design Pattern. This is an architectural design pattern in which the
centerpiece is the underlying CORBA infrastructure – the Object Broker. One of the
difficulties in large scale distributed systems design is designing so-called symmetric
architectures – architectures in which you do not know at design time where objects and
services will run. Many complex systems must perform dynamic load balancing,
executing objects and services from currently lightly-loaded processors in your system.
Since you cannot predict at design time where these services will execute, how do you
invoke them?

That is where the Object Broker comes in. The Object Broker serves as a repository, so at
run-time when one object is ready to provide services, it registers with the Object Broker.
Later, when another object needs to invoke the services of the former, it locates it by
asking the Object Broker. The Object Broker then serves, and dynamic glue binds
together objects that need to collaborate but lack the a priori knowledge of how to find
each other – sort of the computational equivalent of a dating service.

 © Telelogic, Bruce Powel Douglass, Page 2

Telelogic. • 3 Riverside Drive • Andover , MA 01810 • Tel: 978-682-2100 • Fax: 978-682-5995 • http://www.ilogix.com

The entire infrastructure must also include bindings to different communications
protocols – the most common being TCP/IP – as well as bindings to different source-
level languages – such as C, C++, and Java. Because hand-coding all the relevant calls
into the Object Broker, when all you really want to say is “Send a message to Object X”,
would be tremendously onerous, CORBA implementations use what is called IDL –
Interface Description Language. The IDL looks similar to C++. You write your object
requests in IDL, ignoring for the most part the fact that you are using CORBA. Since you
are writing service requests in IDL, the IDL compiler takes your relatively high-level
program and generates your selected source level language statements that make the calls
into the CORBA infrastructure, effectively removing your need to be highly concerned
with how it all happens.

CORBA is an infrastructure (“middleware”) standard (a simplification – it is actually a
set of MANY interrelated standards), thus, there are many CORBA-compliant
implementations that run on many different hardware platforms. The standard was
constructed so that, in principle, the same program runs no matter what the underlying
platform looks like. This greatly simplifies integration and portability.

Of course to complicate the issue, there are a great many middleware standards – COM+,
.NET, Enterprise Java beans, XML/SOAP, CORBA Component Model (CCM), and
many more. So the problems of integrating across multiple middleware infrastructure
platforms exist as well.

The UML, on the other hand, is a modeling standard. The UML is a standardized
language for specifying and describing system requirements and designs. In many
respects, the UML is more general than CORBA because it can use used to create non-
CORBA models as easily as CORBA-compliant models. It provides notation and
semantics for specifying structure (in terms of object and class structure, component
structure, deployment structure, and model structure), behavior (both in terms of
individual objects and classes and in terms of collaborations of objects) and functionality
(implementation-free requirements).

Because the UML is a modeling standard, it too is independent of the underlying
hardware platform, although being essentially a very high level programming language,
you can specify OS and hardware dependent aspects if desired. But for the most part, the
hardware dependent aspects of your application are added during the implementation of
the model – whether that model is hand-coded or the code is generated automatically by
the UML design automation tool.

One of the strengths of the UML is its ability to be adapted to specific vertical markets
with specific concepts and needs. In the UML standard, these are called profiles. One
such profile, the UML Profile for Schedulability, Timeliness and Performance, the so-
called Real-Time UML Profile, was recently adopted by the OMG. A profile is a subset
of the UML, with semantics consistent with the UML standard, but with some small
extensions, including stereotyped elements, tagged values, constraints, and possibly some

 Telelogic, Bruce Powel Douglass, Page 3

Telelogic • 3 Riverside Drive • Andover , MA 01810 • Tel: 978-682-2100 • Fax: 978-682-5995 • http://www.ilogix.com

special notations. There are many UML profiles today and that number is expected to
grow significantly in the next couple of years.

There are other modeling standards within the OMG as well – Metamodel Object Facility
(MOF) and Common Warehouse Model (CWM) that your UML-designed applications
must somehow interact with.

MDA to the Rescue
So you can see the problem. We have a proliferation of component and distribution
infrastructure environments, an ongoing evolution to new source level programming
languages, and different modeling standards. How does one build a system today that
integrates these disparate technologies? How does one build a system today that will be
robust and stable in the years to come as even more new technology come into use?

MDA exists to bring the whole shebang together via the application of modeling
technology. The MDA is a development approach for developing applications that
integrate today and in the future. In MDA, you develop a UML model of your application
that is platform-independent . This platform independent model (PIM) is then mapped into
one or a set of appropriate infrastructure and implementation environments, such as
CORBA and C++, or .NET and Java. The MDA will provide standard mappings to help
tools automate this process to ease the programmer burden inherent in developing PIMs.

Once the PIM is constructed, the next step is to create the application itself. This can be
done in a number of different ways, such as constructing layered models (the PIM being
the upper-layer and the technology-specific infrastructure specified in lower layers) or
through the use of translation tools that automatically perform the mapping of the PIM to
a specific target platform. The more general application PIM semantics are then carried
through into the more detailed platform-dependent application (PDA).

The most robust, and programmer-efficient, method of doing this is to automatically
generate the PDA from the PIM, and using a UML-compiler to apply the mapping rules
from the PIM to the specific infrastructure technology.

Because MDA is inherently platform-independent, adding new platforms, such as
operating systems, source-level languages, and distribution and component middleware
infrastructures, is comparatively simple. It is a matter of defining the appropriate
mapping rules and then constructing a compiler to apply the mapping. This provides the
developer a greatly enhanced ability to reuse existing designs as the implementation
technology evolves, as well as integrating diverse platforms together into well-
coordinated systems.

The application of MDA does not mean that we need to throw away all previously
constructed legacy systems. These legacy systems can be reused by wrapping them with
MDA-compliant interfaces, constructed with the same modeling tools, so that they can
work with the new and evolving MDA systems. Of course, as the legacy systems

 © Telelogic, Bruce Powel Douglass, Page 4

Telelogic • 3 Riverside Drive • Andover , MA 01810 • Tel: 978-682-2100 • Fax: 978-682-5995 • http://www.ilogix.com

themselves are maintained, they may be redesigned incrementally over a relatively long
period of time to make them internally MDA compliant. This provides a smooth
migration path from non-compliant applications to fully MDA-compliant systems in the
future.

The big win is a huge ROI on your intellectual investment, your application-specific
intellectual property that is now captured in platform-specific models. By moving to
MDA compliance, the investment in this corporate IP can be retained and enhanced
without requiring the traditional throw-away-and-redesign.

Rhapsody – Now THAT’S MDA In Action!
The philosophy of Rhapsody has always been the generation of platform-independent
models that map onto many different computing platforms, long before the OMG’s
inception of the MDA initiative. Rhapsody itself may be thought of as consisting of
several collaborating parts:

• Model-Entry System – the developer enters in the PIM using standard UML
diagrams

• Model Compiler – the developer generates the source for the selected language
(C,C++ or Java) and compiler

• Model Tester –allows the tester to stimulate and monitor the execution of the
PIM-generated application on the host or target platform

• Framework – a real-time PIM framework, provided by Rhapsody, that runs
underneath your PIM

• OS-Dependent Adapter – a lightweight OS-specific adapter layer that handles
interaction with the underlying RTOS

Rhapsody generates PIM applications that run on top of the provided framework and OS
adapters. The developer supplies the Middleware and OS from commercial vendors that
form the complete application. See Figure 1.

Rhapsody, right now, is the world’s most complete MDA application development
environment . Rhapsody has always excelled in constructing portable and technology
independent systems via its superior generation of application code from platform
independent models, its object execution framework (OXF), and via the use of OS-
specific adaptors for most commercial RTOSs.

The UML behavioral model is based on Telelogic technology – statecharts. Telelogic is the
leading expert in this technology and provides the most complete support of statemachine
code generation and execution in the world. The Telelogic UML model compilers are the
most advanced on the planet, producing readable, understandable, and efficient source
code for most popular languages and compilers used in real-time and embedded
development projects. Changing from one environment to another, such as from pSOS to
VxWorks to OSE to QNX to Windows, is no more difficult than a mouse click – MDA’s
goal of platform independence has never been more readily apparent.

 ©Telelogic, Bruce Powel Douglass, Page 5

Telelogic • 3 Riverside Drive • Andover , MA 01810 • Tel: 978-682-2100 • Fax: 978-682-5995 • http://www.ilogix.com

Telelogic leads the pack with its advanced execution, debugging and test environments.
Since 1998, Rhapsody has provided developers with the ability to not only test and debug
their PIM, but also test and debug at the design, and not only the code, level. Not only
can Rhapsody generate the application for a variety of platforms, Rhapsody allows the
developer to test and debug the PIM on ALL of those environments – using the same
concepts used to create the model – and execute statecharts, sequence diagrams, and
object diagrams directly, even when the application is running on the embedded target
platform. The developer is able to capture and execute test vectors and run regression
tests on any of the target environments with a mouse click. Need or want to debug at the
source code level? No problem – Rhapsody integrates with source code IDEs, such as
Wind River’s Tornado, for simultaneous design and code level debugging. Want more?

Figure 1: Rhapsody, an MDA-Compliant Tool

What about support for middleware? Rhapsody supports COM+ and CORBA out of the
box. Making an object a CORBA or COM+ object is as easy as marking it as a stereotype
<<CORBAInterface>> or <<COMClass>> and all the IDL and source code generation is
done automatically. Automated model-level testing and debugging works seamlessly in
this environment.

 © Telelogic, Bruce Powel Douglass, Page 6

Telelogic. • 3 Riverside Drive • Andover , MA 01810 • Tel: 978-682-2100 • Fax: 978-682-5995 • http://www.ilogix.com

Summary
The MDA initiative is in response to the burgeoning complexity of today’s systems and
system environments. It answers the question of how we protect and reuse our intellectual
property as infrastructure and language technology evolves around us. Using
standardized infrastructures to implement Platform Independent Models created in UML
allows us to migrate our systems to new technology as it becomes available, and to
integrate systems constructed using widely divergent technology, even today’s complex
component-based distributed systems. Rhapsody, by Telelogic, leads the MDA pack,
providing unparalleled PIM application generating and testing. Rhapsody truly is a tool
for the next Millennium.

Rhapsody is a registered trademark of Telelogic. Telelogic and the Telelogic logos are trademarks of Telelogic. OMG marks and
logos are trademarks or registered trademarks, service marks and/or certification marks of Object Management Group, Inc. registered
in the United States. Other products mentioned may be trademarks or registered trademarks of their respective companies.

