
Poole -- Model-Driven Architecture. ECOOP 2001.

1

Model-Driven Architecture: Vision, Standards
And Emerging Technologies

Position Paper Submitted to ECOOP 2001

Workshop on Metamodeling and Adaptive Object Models

John D. Poole
Hyperion Solutions Corporation

April 2001

john_poole@hyperion.com

Poole -- Model-Driven Architecture. ECOOP 2001.

2

1. Introduction

Recently, the Object Management Group introduced the Model-Driven Architecture
(MDA) initiative as an approach to system-specification and interoperability based on the
use of formal models [MDA, MDA2, DSouza]. In MDA, platform-independent models
(PIMs) are initially expressed in a platform-independent modeling language, such as
UML. The platform-independent model is subsequently translated to a platform-specific
model (PSM) by mapping the PIM to some implementation language or platform (e.g.,
Java) using formal rules.

At the core of the MDA concept are a number of important OMG standards: The Unified
Modeling Language (UML), Meta Object Facility (MOF), XML Metadata Interchange
(XMI), and the Common Warehouse Metamodel (CWM). These standards define the
core infrastructure of the MDA, and have greatly contributed to the current state-of-the-
art of systems modeling [MDA2].

As an OMG process, the MDA represents a major evolutionary step in the way the OMG
defines interoperability standards. For a very long time, interoperability had been based
largely on CORBA standards and services. Heterogeneous software systems inter-
operate at the level of standard component interfaces. The MDA process, on the other
hand, places formal system models at the core of the interoperability problem. What is
most significant about this approach is the independence of the system specification from
the implementation technology or platform. The system definition exists independently
of any implementation model and has formal mappings to many possible platform
infrastructures (e.g., Java, XML, SOAP).

The MDA has significant implications for the disciplines of Metamodeling and Adaptive
Object Models (AOMs). Metamodeling is the primary activity in the specification, or
modeling, of metadata. Interoperability in heterogeneous environments is ultimately
achieved via shared metadata and the overall strategy for sharing and understanding
metadata consists of the automated development, publishing, management, and
interpretation of models.1 AOM technology provides dynamic system behavior based on
run-time interpretation of such models. Architectures based on AOMs are highly
interoperable, easily extended at run-time, and completely dynamic in terms of their
overall behavioral specifications (i.e., their range of behavior is not bound by hard-coded
logic).

The core standards of the MDA (UML, MOF, XMI, CWM) form the basis for building
coherent schemes for authoring, publishing, and managing models within a model-driven
architecture. There is also a highly complementary trend currently building within the
industry toward the realization of these MDA standards in the Java platform (i.e.,
standard mappings of platform-independent models to platform-dependent models, where
the platform-dependent model is the Java platform). This is a sensible implementation
strategy, since development and integration is greatly facilitated through common

1 In this context, the terms model and metadata can be used interchangeably, although model would seem to
have a more general connotation.

Poole -- Model-Driven Architecture. ECOOP 2001.

3

platform services and programming models (interfaces or APIs), provided as part of the
Java platform. Java 2 Platform, Enterprise Edition (J2EE), has become a leading industry
standard for implementing and deploying component-based, distributed applications in
multi-tier, Web-centric environments. Current efforts within the Java Community Process
to develop pure Java programming models realizing OMG standards in the form of J2EE
standard APIs (i.e., JMI, JOLAP and JDM) further enhance the metadata-based
interoperability of distributed applications.

This paper surveys the core OMG MDA standards (i.e., UML, MOF, XMI and CWM)
and discusses the current attempts at mapping these standards to J2EE, as examples of
PIM-to-PSM translations that are currently under development. These forthcoming APIs
will provide the initial building blocks for a new generation of systems based on the
model-driven architecture concept. The progression of these initial MDA realizations to
AOMs is the next logical step in this evolution.

2. The Vision

This paper's proposed vision for the evolution of the MDA is twofold, consisting of both
a near term vision and a long term vision of the future. The near term vision (i.e., nearly
seamless interoperability, based on formal PIM-PSM translations and shared metadata) is
achievable right now. The supporting technologies are largely specified and
implementations are currently being built by a number of organizations. The long-term
vision (i.e., the wide spread deployment of AOMs, as an evolution of the MDA), on the
other hand, is still being conceptualized.

Overview of the Near Term Vision

The proposed near term vision is that of an environment in which efficient and nearly
seamless interoperability between diverse applications, tools and databases is achieved
through the interchange of shared models. Components participating in this environment
leverage standard services provided by implementations of MDA standards that enable
them to expose and interchange their metadata as instances of well-defined models.
These platform services have standard definitions that are expressed via standard
programming models (APIs), which are automatically generated from platform-
independent models.

The Importance of Shared Metadata

Metadata is critical to all aspects of interoperability within any heterogeneous
environment. In fact, metadata is the primary means by which interoperability is
achieved (interoperability is largely facilitated by standard APIs, but ultimately requires
shared metadata as the definitions of system semantics and capabilities). Any MDA-
based system must have the ability to store, manage and publish both application- and
system-level metadata (including descriptions of the environment itself). Applications,
tools, databases, and other components plug into the environment and discover metadata

Poole -- Model-Driven Architecture. ECOOP 2001.

4

descriptions pertaining to the environment. Similarly, a component or product introduced
into the environment can also publish its own metadata to the rest of the environment.
This scenario is illustrated in Fig. 1.

Figure 1: An Example of a Realization of Model-Driven Architecture

Having an abundance of shared, descriptive metadata (ubiquitous metadata) facilitates
software interoperability between platform components in very specific ways, including:

• Data interchange, transformation, and type mapping between dissimilar data
resources can be driven by formal, product-independent metadata descriptions of the
transformations, data types, and type-system mappings.

• Schema generation can be based on shared metadata descriptions of common schema
elements. For example, both a relational database and an OLAP server can build their
own internal representations of a dimensional model, according to a standard,
metadata-based definition of "dimension" published to the environment. Having
common metadata definitions facilitates data interchange between subsystems,
because there is a common understanding of what the data means.

• Business intelligence and visualization functions can utilize metadata in the
processing and formatting of data for analysis and display. Metadata descriptions
confer the "higher level of meaning" on data items that analysts and reporting users
need in order to make sense of data points and results (e.g., definitions of business
terms, glossaries, taxonomies, nomenclatures, etc., are a part of the shared metadata).

• Software components with no prior knowledge of each other's capabilities, interfaces,
and data representations can interoperate once they've established a metadata
"handshake", in which each exposes its features and assesses those of the other. Note
that this exchange of knowledge does not always need to be complete, but to the
extent that components can make sense of each other's capabilities, they can interact
with one another. In the absence of specific knowledge, components might rely on

Visual Modeler
Metadata
Service

Metadata
Modeling &
Authoring

Common Services / Programming Models (APIs)

Metadata

Client Application Analysis Tool RDBMS

Metadata & Data Metadata & Data Metadata & Data

Model-Driven Architecture Platform (Infrastructure)

Poole -- Model-Driven Architecture. ECOOP 2001.

5

standard defaults, or may be able to refer to some other source of information to fill
the knowledge gaps.

An MDA-based system does not require that internal representations of metadata within
applications, tools, and databases be modified to correspond to the shared definitions.
Product-specific internals and programming models remain as they are. Shared metadata
consists of externalized definitions that are interchanged between participating
components. These external definitions are readily understood by components that agree
on the metamodel describing the metadata (e.g., CWM). External definitions are highly
generic, but also possess sufficient semantic completeness (with respect to the problem
domains that components need to address), and are, therefore, understood by a wide
range of participants. Highly product-specific metadata that does not fit the generic
model is handled through the use of extension mechanisms that are pre-defined as part of
the generic models (e.g., the use of UML extension mechanisms, such as tagged values,
stereotypes, and constraints).

To ensure that shared metadata is readily understood by all participating components, an
MDA-based system requires its components to standardize on each of the following:

• A formal language (syntax and semantics) for representing metadata.

• An interchange format for exchanging and publishing metadata.

• A programming model for metadata access and discovery. This must include generic
programming capabilities for dealing with metadata of an unknown nature.

• Mechanisms for extending each of the above.

• An optional metadata service of some form, where published metadata resides. Note
that there is no strict requirement that such a service be provided; i.e., components are
always free to interchange metadata in a point-to-point fashion, without the use of an
intervening service).

Common Services and Programming Models

In addition to shared metadata, another key building block of interoperable systems is the
standardization of common system- and application-level services, along with the
application programming interfaces (APIs) used to access these services. A standard API
defines a standard programming model of the services it represents. This form of
standardization simplifies clients and facilitates the integration of new components into
the MDA-based environment. Clients using common services have a smaller footprint
and are less complex, because they only need to be coded to one interface, regardless of
how services are actually implemented in a particular deployment. Conversely, service
providers implementing standard APIs are readily available for use by a large number of
clients.

Poole -- Model-Driven Architecture. ECOOP 2001.

6

Platform Specification

The final building block of the near term system vision is the platform specification. This
is basically the complete definition of the metadata interoperability and interchange
strategies, common services, and standard APIs that any instance of an MDA-based
system is capable of supporting. Each MDA-based system instance includes a descriptor
that specifies those features actually supported by that particular deployment. Software
tools for specifying and integrating system components generate the descriptor, and tools
for configuring, installing, and bootstrapping an instance of the system are driven by the
descriptor.

Overview of the Long Term Vision

The long term vision for MDA-oriented system architectures includes software capable
of automatic discovery of properties of its environment and adaptation to that
environment by various means, including dynamic modification of its own behavior.
This is an ambitious vision that builds significantly on experiences and insights gained
from implementing the near term vision. It represents a migration of the near term vision
(i.e., metadata-based interoperability) to that of systems whose behavior is largely
determined at run-time by AOMs. The following points summarize the main
characteristics of the long term vision:

Knowledge-Based Orientation

System functionality will gradually become more knowledge-based and capable of
automatically discovering common properties of dissimilar domains, making intelligent
decisions based on those discoveries, and drawing and storing resulting inferences. In
general, "knowledge" is supported by an advanced and highly evolved concept of
ubiquitous metadata, in which the ability to act upon, as well as revise, knowledge at run
time is provided through AOMs.2

Our ability to engineer such systems will come about largely as the result of our
extensive experiences with the use of metamodels and ontologies in influencing system
behavior and decision making. We will eventually learn how to build systems in which a
considerable amount of domain knowledge is pushed up into higher abstraction levels.
Systems will understand how to efficiently extract and act on that information.

Another factor contributing to the development of knowledge-based systems will be the
future availability of far more effective reflective capabilities, as provided by
programming language implementations, as well as repository and middleware services,
and most importantly, generalized metadata management, authoring and publishing

2 It is difficult to say how crisp a distinction will remain between shared metadata and AOMs in these
future systems. It is quite possible that the concept of metadata as a relatively static specification of a
system may be rendered completely obsolete in the future.

Poole -- Model-Driven Architecture. ECOOP 2001.

7

services. The current state-of-the-art of reflection generally allows for static program
introspection. Future reflective capabilities will efficiently support not only
introspection, but also dynamic modification of both structure and behavior [Chiba,
Franz, MOF].

Dynamic Architecture

Experiences gained in the development and deployment of metadata-driven systems
based on extensible object models will ultimately result in the development of systems
that can directly interpret models and modify their own behavior accordingly, rather than
explicitly mapping external views of shared metadata to implementation models.

In the future, this mapping process will be discarded and models will be interpreted
directly by software. This is the promise of the areas of dynamic objects and AOMs
[Franz, Kiczales, AOM, Poole]. In this paradigm, changing the model directly changes
software behavior, resulting in complete run-time extensibility. For example, publishing
a new version of a model in a repository causes all software systems in the environment
to automatically adjust their own behaviors to reflect the changes. Note that a highly
evolved concept of metadata is critical to this sort of architecture. Metadata (i.e., the
Adaptive Object Model) is updated while the system is executing, and the resulting
changes to system behavior and structure takes effect as soon as the running system is
ready to expose those changes.

Adaptive Systems

The architectures and capabilities described above will produce a general class of highly
dynamic and self-organizing systems that can act directly on domain knowledge and
behave intelligently without having to be told how. Such systems can readily
accommodate unforeseen changes in the environment and react appropriately without the
need for programmer intervention (e.g., when dynamic and largely unstructured data
resources are brought into the environment). When systems do need to be modified, this
is accomplished by altering the system model. This may be performed by domain experts
who are not necessarily software specialists, or perhaps by the system itself, in many
cases.

3. Realizing the Near Term Vision: A Survey of the Standards

Metadata Integration: CWM, UML, MOF and XMI

The key to successful integration and interoperability lies in the intelligent use and
management of metadata across all applications, platforms, tools, and databases.
Metadata management and integration can be accomplished through the use of the
OMG's core MDA standards: CWM, MOF, UML and XMI.

Poole -- Model-Driven Architecture. ECOOP 2001.

8

CWM

The Common Warehouse Metamodel (CWM) defines a metamodel (a model of the data
model) representing both the business and technical metadata that's most often found in
the data warehousing and business analysis domains [CWM]. It is used as the basis for
interchanging instances of metadata between heterogeneous, multi-vendor software
systems (i.e., for integrating the data warehousing and business analysis information
"supply chain"). Systems that understand the CWM metamodel exchange metadata in
formats that are consistent with the metamodel.

CWM is actually comprised of a number of constituent metamodels representing data
resources, analysis, warehouse management, and foundational components of a typical
data warehousing/business intelligence environment. Data resource metamodels support
the ability to model legacy and non-legacy data resources, including relational databases,
record-oriented databases, and XML- and object-based data resources. An analysis layer
of CWM defines metamodels for data transformations, OLAP, information
visualization/reporting, business nomenclature, and data mining. A warehouse
management layer consists of metamodels representing standard warehouse processes,
activity tracking and scheduling (e.g., daily extracts and loads). Finally, the foundation
metamodel supports the specification of various common elements and services, such as
data types, type system mappings, abstract keys and indexes, expressions, business
information, and component-based software deployment.

CWM represents a model-based approach to interchanging metadata between software
systems [Tolbert]. Metadata shared between products is formulated in terms of data
models that are consistent with one or more CWM metamodels. A product exports
metadata by formulating a model of its internal metadata structures in a format prescribed
by CWM. Similarly, a product imports metadata by consuming a CWM-compliant
model and mapping it to its internal metadata.

The collection of metamodels provided by CWM is comprehensive enough to model an
entire data warehouse. Using CWM-aware tools, a data warehouse instance could be
generated directly from a warehouse model. Each of the various tools consume those
portions of the model that they can make use of. For example, a relational database
server will consume the relational portion of the model and use it to build its catalog.
Similarly, an OLAP server will search the model for OLAP metadata and use it to define
its multidimensional schema. An extract-transform-load (ETL) tool would most likely
process a slice of the warehouse model spanning several CWM metamodels, including
the relational, OLAP, transformation, data type, type mapping and expression
metamodels.

CWM models are intended to be highly generic, external representations of shared
metadata. Metadata that does not readily fit the CWM format (e.g., highly tool-specific
metadata that must be interchanged) is handled either through standard extension
mechanisms provided by CWM, through extensions to the core CWM metamodel, or

Poole -- Model-Driven Architecture. ECOOP 2001.

9

through the use of product-specific defaults, user input, or some other deployment-
defined logic.

UML

CWM is expressed in the Unified Modeling Language (UML), an OMG standard
language for modeling discrete systems [Rumbaugh]. UML is the notational basis for the
definition of CWM, but CWM also extends a subset of the core UML metamodel with
data warehousing and business analysis domain concepts.

When constructing data warehouse models based on CWM, the use of visual modeling
tools (supporting UML or some equivalent, formal notation) is the preferred method,
since visual models of complex metadata structures are more easily managed and
comprehended by human beings than when represented in other formats (e.g., textual
representations). On the other hand, since the UML language has a precise definition
(i.e., via the UML metamodel), visual UML models are capable of automatic translation
to other formal languages (visual as well as non-visual). This facilitates the interchange
of CWM models in various platform- and tool-independent formats (e.g., XML), as well
as the construction of tool-specific metadata from CWM models (e.g., translation of a
CWM relational model into SQL DDL statements that actually build the schema).

MOF

The Meta Object Facility (MOF) is an OMG standard defining a common, abstract
language for the specification of metamodels [MOF]. MOF is an example of a meta-
metamodel, or model of the metamodel (sometimes called an ontology).

MOF is distinctly object-oriented in nature. It defines the essential elements, syntax, and
structure of metamodels that are used to construct object-oriented models of discrete
systems. MOF serves as the common model of both the CWM and UML metamodels.
Specifically, the MOF specification provides:

• An abstract model of the generic MOF objects and their associations.

• A set of rules for mapping any MOF-based metamodel to language-independent
interfaces (defined in CORBA IDL). An implementation of these interfaces for a
given metamodel would be used to access and modify any model based on that
metamodel.

• Rules defining the life cycle, composition, and closure semantics of elements of
MOF-based metamodels.

• A hierarchy of reflective interfaces. These define generic operations for discovering
and manipulating models based on MOF-compliant metamodels, but whose mapped
interfaces are unknown.

Poole -- Model-Driven Architecture. ECOOP 2001.

10

The power of MOF is that it enables otherwise dissimilar metamodels (representing
different domains) to be used in an interoperable manner. MOF-aware applications may
not have any knowledge of the domain-specific interfaces of some model instance, but
can still read and update that model using the generic operations of the reflective
interfaces.

MOF semantics generally define metadata repository services that support model
construction, discovery, traversal, and update, where models are understood to be
instances of some particular metamodel. In particular, the MOF's support for model life
cycle semantics means that a MOF implementation provides an effective metadata
authoring and publishing tool, when combined with support for visual modeling. For
example, newly developed metamodels can be persisted in the MOF repository and
combined with existing metamodels according to MOF life cycle and composition
semantics (inheritance, clustering, nesting, etc.). Model interfaces and default
implementations can then be generated and made available to the environment. Default
implementations are further enhanced with the inclusion of additional programmed logic,
either written by hand or generated from tools (e.g., implementation of OCL constraints).
A fully MOF-compliant repository provides a significant number of metadata services
that go well beyond the construction and serving of metadata (e.g., persistence,
versioning, directory services).

XMI

XML Metadata Interchange (XMI) is an OMG standard that maps the MOF to the W3C's
eXtensible Markup Language (XML) [XMI]. XMI defines how XML tags are used to
represent serialized MOF-compliant models in XML. MOF-based metamodels are
translated to XML Document Type Definitions (DTDs) and models are translated into
XML Documents that are consistent with their corresponding DTDs.

XMI solves many of the difficult problems encountered when trying to use a tag-based
language to represent objects and their associations. Furthermore, the fact that XMI is
based on XML means that both metadata (tags) and the instances they describe (element
content) can be packaged together in the same document, enabling applications to readily
understand instances via their metadata. Communication of content is both self-
describing and inherently asynchronous. This is why XMI-based interchange is so
important in distributed, heterogeneous environments.

Common Services and Programming Models: Java and J2EE, JMI, JOLAP, JDM

Java and Java 2 Platform, Enterprise Edition

The Java programming language [Java] has provided an infrastructure for the wide spread
deployment of heterogeneous, component- and Web-based, distributed applications. Java
programs are highly transportable because the Java language is interpreted. A Java
program is compiled into a byte stream that is processed by a Java Virtual Machine

Poole -- Model-Driven Architecture. ECOOP 2001.

11

(JVM). If a JVM is available for a particular operating system, or is embedded in a
browser, then Java programs can run in either environment.

Portability is also facilitated through the availability of a large collection of standard and
optional services and APIs. Java services and APIs are developed within the Java
Community Process, an open process in which participants contribute to the development
of Java specifications [JCP]. Any system developer may provide an implementation of
some particular Java language library. As long as the implementation conforms to the
interfaces and semantics of the Java specification, portability is guaranteed.

Java 2 Platform, Enterprise Edition (J2EE), is set of Java specifications that collectively
define a complete multi-tier, component-based architecture for deploying distributed
applications [J2EE]. J2EE takes a container-based approach to deploying platform
services, where a container is a run-time environment for a collection of related
components. Web-oriented middle-tier services, for example, are organized in Web
containers, and application/business logic components are generally organized in
Enterprise Java Bean (EJB) containers. Access to data resources residing on the third tier
is also addressed by a number of J2EE specifications, including JDBC [JDBC] and the
forthcoming Java 2 Connector Architecture [J2C].

J2EE provides a number of significant advantages to application developers, including
the availability of a consistent programming model across multiple tiers. J2EE allows for
the rapid development and deployment of distributed applications across heterogeneous,
multi-tier platforms.

Within the JCP, a number of Java specifications are currently under development that
represent formal mapping of OMG MDA standards to Java technology models. These
are the Java Metadata Interface (JMI), Java OLAP Interface (JOLAP), and Java Data
Mining API (JDM). Each of these is described in subsequent subsections.

These efforts represent a natural extension and continuation of the OMG's MDA
standards. In fact, an obvious trend developing within our industry is the increasing
"realization" of the generic MOF and CWM metamodels in the form of J2EE
specifications. This trend is highly significant, because it means that there is an
acknowledged need to provide consistent programming models and services for metadata
and platform interoperability within the open platform environment.3

JMI

Java Metadata Interface (JMI) provides a formal mapping of the OMG's MOF to the Java
language. A JMI implementation allows for the generation of pure Java interfaces for

3 Two other highly significant, related efforts are UML Profile for EDOC [EDOC] and UML/EJB Mapping
Specification [UMLEJB]. These efforts will ultimately form the basis for integrating UML-based
modeling with Java and component-based development environments. These efforts are not elaborated
here, however, as this paper has focused primarily on metadata, metamodeling and AOMs.

Poole -- Model-Driven Architecture. ECOOP 2001.

12

programmatic and XMI-based access to repository-based MOF metamodels and their
instances. This means that a Java implementation of any MOF-based metadata service
can expose both the generic and metamodel-specific interfaces derived from the MOF's
interface mapping rules. Java clients have completely portable access to metadata
services via JMI.

The development of JMI is being led by Unisys and includes the participation of Sun
Microsystems, Hyperion, IBM, Oracle, and a number of other industry leaders [JMI].

JOLAP

Java OLAP Interface (JOLAP) is an effort to develop a pure Java API for OLAP servers
and applications deployed in the J2EE environment. The development of JOLAP is
being led by Hyperion Solutions Corporation, and includes the participation of IBM,
Oracle, Unisys, Sun Microsystems, and other industry leaders [JOLAP].

In the J2EE environment, JOLAP generally serves as the client API of an OLAP server or
other multidimensional database system residing on the data services tier of the J2EE
environment.

JOLAP uses the CWM OLAP metamodel to describe OLAP metadata, thus ensuring that
JOLAP-compliant resources are capable of complete metadata interoperability and
interchange via the CWM standard. JOLAP also defines query interfaces that support the
formation and execution of OLAP queries, along with the management and manipulation
of multidimensional result sets.

JOLAP will leverage a number of existing and forthcoming J2EE APIs. This includes:
Java 2 Connector Architecture (J2C) for connection management and data-tier resource
and transaction management, Java Metadata Interface (JMI) for advanced metadata
functionality (including reflective capabilities), Java Naming and Directory Interface
(JNDI) for directory services, and the Java Security Model to provide single sign-on,
authentication and authorization.

JDM

Java Data Mining API (JDM) provides a pure Java API for business intelligence
applications employing data mining techniques for knowledge discovery and analysis.
JDM is similar to JOLAP in the sense that it represents the Java reification of a CWM
metamodel (i.e, CWM Data Mining package) [JDM].

The development of JDM is being led by Oracle and includes the participation of
Hyperion, IBM, Sun Microsystems, and others.

Poole -- Model-Driven Architecture. ECOOP 2001.

13

Relating the Various Standards

The diagram below illustrates the general relationships between the OMG MDA
standards and corresponding J2EE Platform standards. Note that in the case of JOLAP
and JDM, alignment between OMG and Java occurs specifically in the metadata
management interfaces of the Java APIs. Both JOLAP and JDM define additional
interfaces for data and query management which, of course, are not within the scope of
CWM or MOF.

Figure 2: Relationships Between Standards

References

[AOM] ECOOP '2000 Workshop on Metadata and Active Object-Models,
June, 2000, Cannes, France. Lecture Notes in Computer Science 1852,
Springer-Verlag, Heidelberg.
 http://www.adaptiveobjectmodel.com/ECOOP2000/.

[Chiba] Chiba, S., "Load-Time Structural Reflection in Java", Proceedings of
ECOOP 2000, pp.311-336, Lecture Notes in Computer Science 1850,
Springer-Verlag, 2000.

[CWM] Object Management Group, The Common Warehouse Metamodel
(specifications, papers, presentations, OMG press kit, etc.).
http://www.cwmforum.org/, http://www.omg.org/.

JMI

CWM
OLAP

JOLAP
(metadata)

CWM Data
Mining

JDM
(metadata)

UML
Metamodel

MOF
Model

instance of

extends

extends

mapping to Java

mapping
to Java

mapping to Java

instance of

instance of

XMI mapping to XML

serializes
instances of

Java 2
Connectors

JNDI

Java
Security

Poole -- Model-Driven Architecture. ECOOP 2001.

14

[DSouza] D'Souza, D., "Model-Driven Architecture and Integration: Opportunities
and Challenges", Version 1.1.
http://www.catalysis.org/publications/papers/2001-mda-reqs-desmond-
6.pdf

[EDOC] OMG, UML Profile for EDOC RFP Home Page:
http://cgi.omg.org/techprocess/meetings/schedule/
UML_Profile_for_EDOC_RFP.html

[Franz] Franz, Inc., "The Meta-Object Protocol and Knowledge-Based Systems",
December, 1997. http://www.franz.com/support/tutorials/mopnkbs.php3

[J2C] J2EE Connector Architecture, JSR-16 Home Page
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_016_connect.
html.

[J2EE] Java 2 Platform, Enterprise Edition Home Page :
http://java.sun.com/j2ee/

[Java] Java Technology Home Page : http://java.sun.com/

[JCP] Java Community Process Home Page :
http://java.sun.com/jcp

[JDBC] JDBC Data Access API Home Page:
http://java.sun.com/products/jdbc/index.html

[JDM] Java Data Mining API, JSR-73 Home Page:
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_073_dmapi.html

[JMI] Java Metadata Interface, JSR-40 Home Page:
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_040_mof.html

[JOLAP] Java OLAP Interface, JSR-69 Home Page:
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_069_jolap.html

[Kiczales] Kiczales, G., des Rivieres, J., and Bobrow, D.G., The Art of the Meta-
object Protocol, MIT Press, 1991.

[MDA] OMG Model-Driven Architecture Home Page:
http://www.omg.org/mda/index.htm

[MDA2] OMG Architecture Board MDA Drafting Team, "Model-Driven
Architecture: A Technical Perspective",
ftp://ftp.omg.org/pub/docs/ab/01-02-01.pdf

Poole -- Model-Driven Architecture. ECOOP 2001.

15

[MOF] OMG Meta Object Facility Specification, Version 1.3, September, 1999.
http://www.dstc.edu.au/Research/Projects/MOF/rtf/.
http://www.omg.org/.

[Poole] Poole, J., "The Common Warehouse Metamodel as a Foundation for
Active Object Models in the Data Warehousing Environment",
ECOOP '2000 Workshop on Metadata and Active Object-Models,
June, 2000, Cannes, France. Lecture Notes in Computer Science 1852,
Springer-Verlag, Heidelberg.
http://www.adaptiveobjectmodel.com/ECOOP2000/.
http://www.cwmforum.org/CwmAOM.pdf.

[Rumbaugh] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language
Reference Manual, Addison-Wesley, 1998.

[Tolbert] Tolbert, D., "CWM: A Model-Based Architecture for Data
Warehouse Interchange", Workshop on Evaluating Software
Architectural Solutions 2000, University of California at Irvine,
May, 2000. http://www.cwmforum.org/uciwesas2000.htm

[UMLEJB] Java UML/EJB Mapping Specification, JSR-26 Home Page:
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_026_uml.html.

[XMI] Object Management Group, XML Metadata Interchange Specification,
Version 1.1, http://www.omg.org/.

