Applying Model Based Systems Engineering (MBSE) to Extracorporeal Membrane Oxygenation (ECMO)

L. Drew Pihera
Georgia Tech Research Institute

Dr. Matthew L. Paden
Children’s Healthcare of Atlanta

Summit on Model Based Systems Engineering in Healthcare, Boston, MA
Manubrium
Superior vena cava
Right main bronchus
Horizontal fissure
Right atrium
Oblique fissure
Inferior vena cava
Diaphragm / Liver
Aortic arch
Pulmonary trunk
Left main bronchus
Left atrium
Left ventricle
Oblique fissure
Diaphragm
Left costophrenic angle
Gastric bubble
What is ECMO?

- **Extracorporeal Membrane Oxygenation**
- Provides patient with heart and/or lung bypass (rest)

Source: “Extracorporeal Membrane Oxygenation: a broken system”
• Developed by Dr. Robert Bartlett, first used on an infant in 1975.
• Remove blood from the body, oxygenate, and return (similar in function to a heart-lung bypass machine).
• Used in cases where traditional means fail, and survival expectancy is less than 20-25%.
• Can improve survival to nearly 75%.
Overall Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Total Patients</th>
<th>Survived ECLS</th>
<th>Survived to DC or Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>27,007</td>
<td>22,782</td>
<td>20,093</td>
</tr>
<tr>
<td>Cardiac</td>
<td>5,425</td>
<td>3,339</td>
<td>2,206</td>
</tr>
<tr>
<td>ECPR</td>
<td>980</td>
<td>626</td>
<td>388</td>
</tr>
<tr>
<td>Pediatric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>6,149</td>
<td>4,034</td>
<td>3,496</td>
</tr>
<tr>
<td>Cardiac</td>
<td>6,784</td>
<td>4,443</td>
<td>3,388</td>
</tr>
<tr>
<td>ECPR</td>
<td>2,071</td>
<td>1,123</td>
<td>840</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>5,146</td>
<td>3,317</td>
<td>2,905</td>
</tr>
<tr>
<td>Cardiac</td>
<td>4,042</td>
<td>2,255</td>
<td>1,636</td>
</tr>
<tr>
<td>ECPR</td>
<td>1,238</td>
<td>476</td>
<td>355</td>
</tr>
<tr>
<td>Total</td>
<td>58,842</td>
<td>42,395</td>
<td>35,307</td>
</tr>
</tbody>
</table>

Survived ECLS: %84, %62, %64, %66, %65, %54, %64, %56, %38, %72, %60
Survived to DC or Transfer: %74, %41, %40, %57, %50, %41, %56, %40, %29, %60
• Sounds simple enough, right?
ECMO is not so simple
• No standardization between sites
• Need for highly trained staff
• Incredibly complex, disparate systems all requiring second to second monitoring 24 hours a day

• VERY high complication rate = death.
• Initial partnership between Georgia Tech Professional Master’s of Applied Systems Engineering (PMASE) and Children’s Healthcare of Atlanta (CHOA)

• Stated long-term goal of “improving” ECMO. Part of the work was figuring out what “improve” could mean

• Work would include a mix of traditional and model-based systems engineering

• Long term partnership with many PMASE capstone teams (12 week projects).
GT PMASE teams with CHOA in 2011 (CHOA would sponsor all PMASE teams)
Collaboration expanded in 2012
 • Kapi’olani Medical Center (Hawaii)
 • Miller’s Children’s Hospital (California)
 • Rady Children’s Hospital (California)
 • University of Arizona Medical Center
2014 Cohort is trying to interview multiple additional ECMO centers
• First cohort:
 • Characterize the system (stated requirement)
 • Propose future work and direction (stated requirement)
 • Reduce complexity?
 • Work toward a portable ECMO circuit?
 • Work toward eventual FDA approval?
 • Other improvements?
 • Figure out how to foster communication (derived requirement)
• Second cohort
 • Refine the models of the first cohort
 • Expand to begin requirements elicitation
 • Develop a framework for starting activities like trade space analyses
• Third cohort
 • Requirements/prototype for a web application for characterizing circuits across the US (to be detailed in a paper/presentation at CSER 2014)
• Fourth cohort started project in May 2014
 • Work is focused on gathering data on existing ECMO protocols at various centers and suggesting a path toward standardization of protocols
How can MBSE begin to help the problems

• No standardization between sites
 • Model an “improved” state of a standardized circuit (with respect to data automation and visualization)
 • Model the structure and behavior of existing circuits around the US, use this as well as patient outcomes to fuel best of breed trade studies
 • Model the stakeholders and their responsibilities at different locations, find common areas and major differences

• Need for highly trained staff
 • Use models to find possible areas for automatic data capture to reduce burden on staff

• Incredibly complex, disparate systems all requiring second to second monitoring 24 hours a day
 • Model a possible new display for fusing data in one location
• Stakeholder interviews
 • Not specifically MBSE, but did help to inform our models of stakeholders, ECMO structure and behavior, areas for automation and more
• MBSE Techniques (first 2 cohorts)
 • DoDAF OV-1 (model an “improved” state)
 • SysML Model (model existing structure, behavior, requirements, stakeholders)
 • N-squared diagram (model data flow in the SoS and areas for improvement)
 • Prototype visualizations (model a fused data display)
DoDAF OV-1 – Capture the need

Improving ECMO Therapy through Data Synthesis and Visualization

- Shows the Operational View of ECMO in the future “improved” state
 - Lightning bolts represent data automation
 - Role-based data visualization (denoted by graphs)
 - Maintaining historical data
- Shows what different stakeholders care about
 - Data
 - Time intervals
 - General operations
- Communicate what data synthesis and visualization is meant to accomplish
- Capture the stakeholders
- Requires iteration with a SME
- Find “is a” relationships (e.g. the Sponsor is a Physician)
- Capture stakeholder actions
 - Some actions include others
 - Some actions extend others
- In order to reduce burden on staff, need to know who all is burdened
- If looking toward standardizing, need to know how things are done now
- This is specific to CHOA
SysML Structural Diagrams

- Capture the structure at a System and System of Systems Level
- Capture the internal structure of the circuit (including flows)
- For standardization, need to know how the system is structured and how it behaves at various locations
- Capture all the disparate systems
- This is specific to CHOA
• Shows feed-forward and feed-back loops
 • In this case, showing the flow of information in a deployed setting
 • Shows both present state and desired future state
• Almost all lines in the current state (top) are performed manually by humans
 • Minimize the number of loops that humans perform (e.g. by automated data entry)
 • Allows more time to be spent focusing on patient
• This is specific to CHOA
Prototype Visualization

- Possible fused data display (rather than the chaos shown in the bedside image)
 - Attempt to show relevant ECMO data and patient data together
 - Layout in a similar format to actual circuit
 - Show trends over a timeframe symbols
 - Historical graph available when needed
 - Timeframe did not allow for much iteration
- Ideally allow the current user of the display to tailor what’s visible to what they care about
• Developed a common language that can be used across sites internationally
 • Document different circuit configurations and look for best of breed
 • Standardization will allow potential reductions in complications and improved patient survival.
• Changes to the international registry of ECMO patients that will allow capture of important engineering variables associated with complications
• Has served as a impetus for recognition and conversation in the ECMO community to address these problems.
Subset of Proposed Future Projects

- Information integration
- Therapeutic sensor integration
- Hardware instrumentation
- Redundancy characterization
- Portability analysis
- Training standardization
Conclusions

- MBSE helped bridge the doctor-engineer language barrier
 - Medical practitioners and engineers speak very different languages sometimes.
 - Graphical models help alleviate this
 - With very little instruction, the sponsor was able to read the models and understand their intent

- Approach is likely to be beneficial in other non-engineering domains
 - We feel that if we are able to foster communication using models between engineers and medical staff, the approach is would carry over into other areas

- Helped lead to a logical prioritization of future efforts (though priorities change in the other 40 weeks of the year)
 - The first cohort proposed a series of projects at the beginning of the partnership
 - The modeling done by the first cohort specifically lead to a greater understanding (by the engineers) of the system and where the sponsor wished to move toward (eventual FDA certification and portable ECMO)
 - Using this understanding, the engineers were able to prioritize these projects with the goal of FDA certification and portable ECMO
 - Detailed further in the 2011 INCOSE paper
Related Papers

Questions?