Model Based Engineering and Its Integration with Safety Assurance Cases for Medical Device Software

Yi Zhang Ph.D., Paul Jones
Office of Science and Engineering Laboratories
Center for Devices and Radiological Health
Food and Drug Administration
March 25th, 2015
Disclaimer

The opinions and information in this presentation are those of the authors, and do not represent the views and/or policies of the U.S. Food and Drug Administration.
Abstract

Model based engineering (MBE) has the potential to help medical device manufacturers detect subtle design flaws at early stages of the development lifecycle, and reduce design/implementation errors in the final device. The rigor of the MBE process and derived artifacts can serve to justify the confidence of stakeholders (e.g. internal, third party, and regulatory) in device safety. In particular, artifacts generated through the MBE process are objective, verifiable, and traceable, and hence can be used as evidence in safety assurance cases to facilitate and ease vested stakeholder assessments of device safety.

A variety of modeling and verification tools are available to implement the MBE process. These tools vary in their semantics, expressiveness, and verification rigor. Thus, developers have to realize the strength and weakness of these tools, and make reasonable choices. Furthermore, when applied to the design of medical devices, the MBE process has to be integrated with the organization’s risk management activities (as specified in ISO-14971), to ensure that all foreseeable risks are adequately addressed and mitigated in the final device.
Model Based Engineering (MBE) of Medical Device Software

- Verification results could cause re-iteration of previous development activities
- Trustworthy development artifacts: clearly/unambiguous defined, and demonstrable/verifiable properties
- Explicit and complete traceability among development artifacts
Safety-Driven Development of Medical Device Software

- Safety and effectiveness are two primary properties of interest.
- ISO 14971: Application of risk management to medical devices.
- All foreseeable risks of the device have to be identified and adequately mitigated.
 - Software mitigation measures have to be correctly implemented and tested;
 - Risks caused by software have to be adequately mitigated.
- Risk mitigation measures need to be traceable throughout the development artifacts to the final device.
Generic Infusion Pump Project

- Establish safety-driven MBE methods for generic infusion pump software safety model.
 - Developed a set of generic infusion pump safety reference models that can be used as a reference standard to verify safety properties in different classes of infusion pumps.

- Joint effort between FDA and several universities
 - GIP web site (http://rtg.cis.upenn.edu/gip.php3): a repository of software development artifacts for infusion pump software
 - Open contribution for community (manufacturers & academics) to advance the science and practice of developing high-confidence medical device software.
Safety-Driven MBE of Generic Patient Controlled Analgesic Pump (GPCA) Model

Common use scenarios and functions of PCA pumps

Model Development

GPCA Pump Model (Simulink + UPPAAL)

Model Checking + Instrumentation Based Verification

Code Generation (TIMES tool)

Platform-Independent Code

Glue Code

Code-Interfacing Compilation

Final software executable

Testing

Common PCA pump hazards

Generic PCA pump safety requirements
GPCA Pump Development Artifacts

<table>
<thead>
<tr>
<th>HID</th>
<th>Hazard</th>
<th>Pump Type</th>
<th>Cause</th>
<th>Action</th>
<th>Mitigated by</th>
<th>Safety Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overinfusion</td>
<td>All</td>
<td>Programmed flow rate too high</td>
<td>Alarm(); Log()</td>
<td>Drug library</td>
<td>1.1, 1.4.4, 1.4.11</td>
</tr>
<tr>
<td>1.2</td>
<td>Overinfusion</td>
<td>All</td>
<td>Dose limit exceeded due to too many bolus requests</td>
<td>Alarm(); Log()</td>
<td>Flow sensor</td>
<td>1.4, 3.4.6</td>
</tr>
<tr>
<td>1.3</td>
<td>Overinfusion</td>
<td>All</td>
<td>(Programmed) Bolus volume concentration too high</td>
<td>Alarm(); Log()</td>
<td>Drug library</td>
<td>1.4, 3.4.6</td>
</tr>
<tr>
<td>1.4</td>
<td>Overinfusion</td>
<td>All</td>
<td>Incorrect drug concentration</td>
<td>Alarm(); Log()</td>
<td>Barcode scanner</td>
<td>1.1, 6.1.3, 6.1.4</td>
</tr>
</tbody>
</table>

GPCA Model + Verification Results (Simulink/Stateflow + UPPAAL)

Deployable code + Test cases and results
Lessons Learned

督 Fidelity of design model is bounded by assumptions
e.g. use scenarios, user inputs, environment, etc.

督 There is gap between design models and final implementation of the device
e.g. computational platform, operational systems

督 Various verification techniques can be used to ensure the correctness and safety of design models

督 Expert review → Testing/Simulation/Instrumentation based verification → Formal verification (i.e., model checking)

Increasing order of rigor vs. increasing order of cost

督 Not all safety/functional requirements can be formally verified

* Details can be found in Safety-Assured Development of the GPCA Infusion Pump Software, B. Kim and et al., in proceedings of the 11th International Conference on Embedded Software (EMSOFT 2011), pages 155-164, October 2011.
MBE and Safety Assurance Cases

- Safety Assurance Case: structured argument about “device” safety
 - Claim: Device is safe (ISO 14971: free from unacceptable risk)
 - Argument: Rationale & appeal to evidence justifying the claim
 - Evidence: objective, verifiable, traceable

- Benefits of using MBE artifacts in Assurance Cases
 - Using MBE processes as arguments & artifacts as evidence can improve the quality and trustworthiness of the claim (i.e. device is safe)
 - Models support mathematical & computational rigor
 - Verification results of models are objective & measurable
 - Explicit traceability among MBE artifacts helps justify design & development integrity
Safety Assurance Case with MBE Artifacts

- Claims
- Arguments
- Evidence
Questions?