The Model-Driven Semantic Web
Emerging Standards & Technologies

Elisa Kendall
Sandpiper Software

March 24, 2005
Model Driven Architecture® (MDA®)

- Insulates business applications from technology evolution, for
 - Increased portability and platform independence
 - Cross-platform interoperability
 - Domain-relevant specificity

- Consists of standards and best practices across a range of software engineering disciplines
 - The Unified Modeling Language (UML®)
 - The Meta-Object Facility (MOF™)
 - The Common Warehouse Metamodule (CWM™)

- MOF defines the metadata architecture for MDA
 - Database schema, UML and ER models, business and manufacturing process models, business rules, API definitions, configuration and deployment descriptors, etc.
 - Supports automation of physical management and integration of enterprise metadata
 - MOF models of metadata are called metamodels
MOF-Based Metadata Management

- MOF tools use metamodels to generate code that manages metadata, as XML documents, CORBA objects, Java objects.
- Generated code includes access mechanisms, APIs to:
 - Read and manipulate
 - Serialize/transform
 - Abstract the details based on access patterns
- Related standards:
 - XML Metadata Interchange (XMI®)
 - CORBA Metadata Interface (CMI)
 - Java Metadata Interface (JMI)
- Metamodels are defined for:
 - Relational and hierarchical database modeling
 - Online analytical processing (OLAP)
 - Business process definition, business rules specification
 - XML, UML, and CORBA IDL
The Semantic Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

-- Tim Berners-Lee

"the wedding cake"

"the bus"
Level Setting

An ontology specifies a rich description of the

- Terminology, concepts, nomenclature
- Properties explicitly defining concepts
- Relations among concepts (hierarchical and lattice)
- Rules distinguishing concepts, refining definitions and relations (constraints, restrictions, regular expressions)

relevance to a particular domain or area of interest.

Based On Aaa ’99 Ontologies Panel - Mcguinness, Welty, Ushold, Gruninger, Lehmann
Ontology-Based Technologies

- Ontologies provide a **common vocabulary** and definition of rules for use by independently developed resources, processes, services.

- **Agreements** among companies, organizations sharing common services can be made with regard to their usage and the **meaning** of relevant concepts can be expressed unambiguously.

- By **composing** component ontologies, mapping ontologies to one another and **mediating** terminology among participating resources and services, independently developed systems, agents and services can work together to share information and processes consistently, accurately, and completely.

- Ontologies also facilitate conversations among agents to collect, process, fuse, and exchange information.

- Improve search accuracy by enabling contextual search using concept definitions and relations among them instead of/in addition to statistical relevance of keywords.
Semantic Web Evolution

- Draft specifications for RDF/S & OWL became formal W3C Recommendations in February 2004
- Increasingly attention is on applications and deployment strategies, moving from research to early adoption
- Research from the DAML community and W3C is now focused on
 - Methodology & best practices - representing value spaces, complex relations, engineering methods, applications with richly specified ontologies
 - Query and rule languages
 - Tools and development resources
 - Parsers and Validators
 - Authoring Tools for ontologies and mark-up
 - Ontologies, knowledge bases, and libraries
 - Interaction with SOAP/WSDL to support Semantic Web Services (OWL-S, SWRL)
Guiding Principles

- Historically, knowledge representation and reasoning systems have operated under *closed world* assumptions.
- Uncertainty is magnified under *open-world*, “wild, wild web” conditions, making reasoning more difficult.
- Semantic web languages are designed to support less certainty, provide “better” search results, informed answers to questions, not absolutes.
- Based on XML, they can assist businesses in leveraging mark-up, content, and data:
 - To augment business intelligence/analysis and knowledge mining.
 - To support knowledge sharing and collaboration, augment enterprise information integration.
 - Enrich web services and other applications.
 - Support policy-based applications and ensure compliance with policy at a lower cost with higher potential ROI than traditional computing methods.
MDA from the KR Perspective

- EAI & Ell solutions rely on strict adherence to agreements based on common information models that take weeks or months to build.
- Modifications to the interchange agreements are costly and time consuming.
- Today, the analysis and reasoning required to align multiple parties’ information models has to be done by people.
- Machines display only syntactic information models and informal text describing the semantics of the models.
- Without formal semantics, machines cannot aid the alignment process.
- Translations from each party’s syntactic format to the agreed-upon common format have to be hand-coded by programmers.
- MOF® and MDA® provide the basis for automating the syntactic transformations.
MOF and KR Together

- MOF technology streamlines the *mechanics* of managing models as XML documents, Java objects, CORBA objects

- Knowledge Representation supports *reasoning* about resources
 - Supports semantic alignment among differing vocabularies and nomenclatures
 - Enables consistency checking and model validation, business rule analysis
 - Allows us to ask questions over multiple resources that we could not answer previously
 - Enables policy-driven applications to leverage existing knowledge and policies to solve business problems
 - Detect inconsistent financial transactions
 - Support business policy enforcement
 - Facilitate next generation network management and security applications while integrating with existing RDBMS and OLAP data stores

- MOF provides no help with reasoning
- KR is not focused on the mechanics of managing models or metadata
- Complementary technologies - despite some overlap
Cost of Terminological Issues

- Terminology is one of the most urgent issues in health care today - by some accounts, the second most important problem we are facing
 - Health data is not comparable
 - Health systems cannot interchange data
 - Secondary uses (research, efficiency) are not possible
 - Links to decision support systems are not possible

- In Drugs and Pharmacy
 - Historically proprietary information systems
 - No publicly available ontology; many formularies with overlapping, spotty, encoded knowledge
 - No consistent organizational paradigm
 - No reliable cross-reference between trade names and generic names in machine readable form

- Genomics and Bioinformatics is compounding the problem
 - Inconsistent naming of genes, sequences, SNPs, or proteins
 - Numerous Genomic nomenclatures

Derived from Presentation by Dr. Chris Chute, Chair of Medical Informatics, Mayo Clinic – At NIST eHealth Conference, June 2003
Cost of Knowledge Capture

- Most tools are oriented towards taxonomy or limited ontology formation vs. knowledge base development, terminology reconciliation, or alignment.
- They require significant knowledge of formal logic and domain analysis from an ontological perspective.
- Few are graphical and/or standards based.
- Vulcan estimates the cost of encoding 50 pages of basic high school chemistry textbook knowledge at $10,000 per page*.
- Tools to assist subject matter experts (SMEs) in encoding knowledge, including increasing automation in developing the starting points for ontology and KB development are essential.
- Combining MOF® and MDA® technologies with KR dramatically reduces cost, increases likelihood of success, increases availability to a much broader community of potential users.

* See Vulcan, Inc. – Project Halo, at http://www.projecthalo.com/
Towards a Model Driven Semantic Web - ODM

- Six EMOF platform independent metamodels, (PIMs), five normative
- Mappings (currently tables, QVT planned)
- UML2 Profiles
 - RDFS & OWL
 - TM
 - SCL planned
- Collateral
 - XMI
 - Java APIs
 - Tool support
- Conformance
 - RDFS & OWL
 - All else optional
Bridging KR and MDA
Technology Architecture

Presentation Services
- Interface Services
- Dynamic Content Services
- Content Channels

Information Infrastructure
- Data Services
- Directory Services
- Decision Support Services
- Config & Doc Mgmt Content Development

Process Logic
- Business Process Services
- Collaboration Services
- Policy Administration
- Context Services
- Messaging and Middleware Services

Policy-based Infrastructure Services
- Network Services
- Internet Services
- Security Services
- System Management
Implementation Strategies

Native OWL Tool

UML Tool with ODM Plug-In

RDFS/OWL

MOF/ODM – OWL Bridge

MOF Repository Tools

XMI Representation Enables Use in Eclipse/EMF, MOF-Based Tools

Use UML to Refine Linkage Ontologies

Link ODM Models (conceptual / semantic) To logical (ERWIN, Rose) and physical models (ERWIN, Rose, Power Designer)

Use Links / Mappings For Query Planning, Business Intelligence

Use Reasoning to Find Inconsistencies Validate Logic, Policies

Ontology Analysis & Validation

Java Theorem Prover (JTP) Hybrid Reasoning System

Use Links / Mappings to Find & Eliminate Redundancies thru Reasoning

Copyright ©2005 Sandpiper Software, Inc.
Business Integration

- Semantic Web Services standards are converging (OWL-S and SWSL)
- OMG RFC/RFPs forthcoming for extensions to ODM to support
 - Additional mappings and profile for Common Logic (CL)
 - Semantic Web Services
 - ISO/EXPRESS
 - Emerging Semantic Web Rule languages
- Leverage mapping from UML for BPEL to ODM extensions
- Strategy:
 - Link business process models through MOF environment
 - Generate OWL for the linkage
 - Use linkage as basis for mediating business process semantics
A Framework for
Next Generation Interoperability

- MOF’s model management facilities and KR capabilities for machine interpretable semantics and reasoning are separate, complementary concerns.

- The ability of reasoners to find discrepancies in invariant rules, preconditions, and post conditions, can add scalability to MDA’s use of Design-by-Contract (DBC).

- UML profiles can serve as graphical notations for Semantic Web languages, dramatically increasing ease of use.

- The combination of MDA and SW technologies promises to
 - Address the missing link in business process automation
 - Enable true information interoperability and continuity
 - Support next generation policy-based applications development.
The Model-Driven Semantic Web

- Knowledge acquisition, developing the semantics is the bottleneck
- Leveraging existing assets breaks that bottleneck
- Correlation through reasoning provides the utility
 - Multi-dimensional, cross organizational tailored semantic views
 - “Virtual” repository approach enables elimination of redundancy
 - Reasoning supports quality initiatives through inconsistency discovery, model and content validation
- MDA and MOF coupled with Semantic Web technologies are the key