Introduction to Real-time Component Middleware & the OMG Lightweight CORBA Component Model (CCM)

Monday, July 9th, 2007

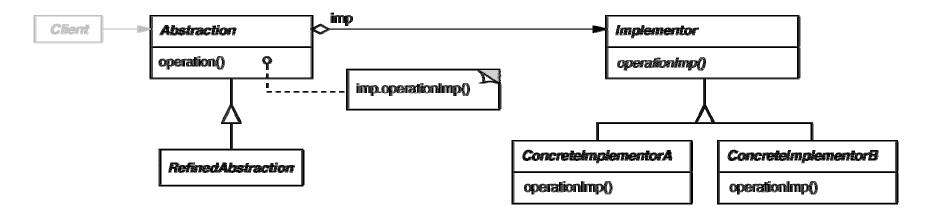
Dr. Douglas C. Schmidt & William R. Otte schmidt@dre.vanderbilt.edu & wotte@dre.vanderbilt.edu http://www.dre.vanderbilt.edu

Electrical Engineering & Computer Science Vanderbilt University Nashville, Tennessee

Other contributors include Jai Balasubramanian, Kitty Balasubramanian, Gan Deng, Tao Lu, Bala Natarajan, Jeff Parsons, Frank Pilhofer, Craig Rodrigues, & Nanbor Wang

Motivation & Overview of Component Middleware

www.cs.wustl.edu/~schmidt/cuj-16.doc

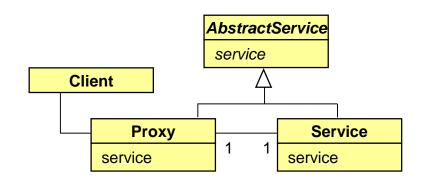


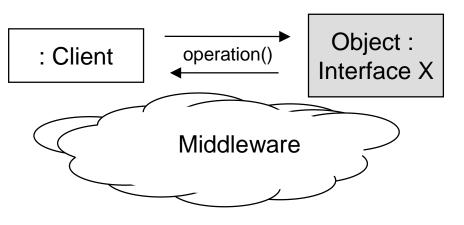
Where We Started: Object-Oriented Programming

- Object-oriented (OO) programming simplified software development through higher level abstractions & patterns, e.g.,
 - Associating related data & operations
 - Decoupling interfaces & implementations

class X
operation 1()
operation2()
operation 3()
operation <i>n</i> ()
data

Well-written OO programs exhibit recurring structures that promote abstraction, flexibility, modularity, & elegance

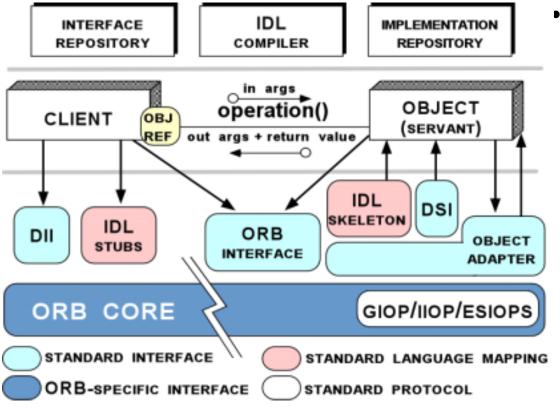




Next Step: Distributed Object Computing (DOC)

- Apply the Broker pattern to abstract away lower-level OS & protocol-specific details for network programming
- Create distributed systems which are easier to model & build using OO techniques
- Result: robust distributed systems built with distributed object computing (DOC) middleware
 - e.g., CORBA, Java RMI, etc.

We now have more robust software & more powerful distributed systems



Overview of CORBA 2.x Standard

- •CORBA 2.x is DOC middleware that shields applications from *dependencies* on heterogeneous platforms
 - e.g., languages, operating systems, networking protocols, hardware

- CORBA 2.x automates
 - Object location
 - Connection & memory mgmt.
 - Parameter (de)marshaling
 - Event & request demultiplexing
 - Error handling & fault tolerance
 - Object/server activation
 - Concurrency & synchronization
 - Security

Example: Applying OO to Network Programming

- CORBA 2.x IDL specifies interfaces with operations
 - Interfaces map to objects in OO programming languages
 - e.g., C++, Java, Ada95, etc.

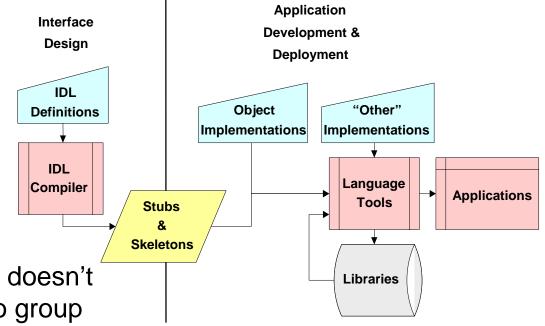
```
interface Foo
{
  void bar (in long arg);
};
```


IDL

```
C++
```

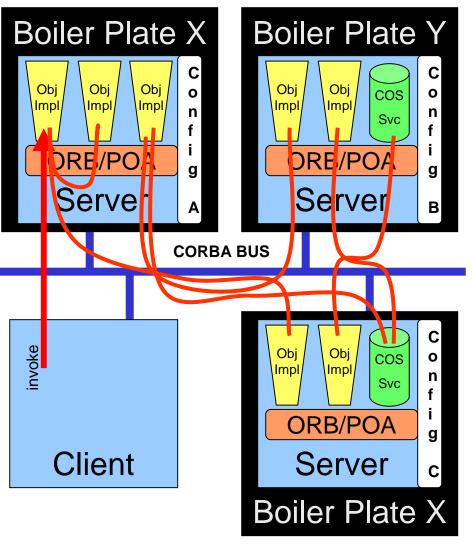
```
class Foo : public virtual CORBA::Object
{
  virtual void bar (CORBA::Long arg);
};
```

 Operations defined in interfaces can be invoked on local or remote objects



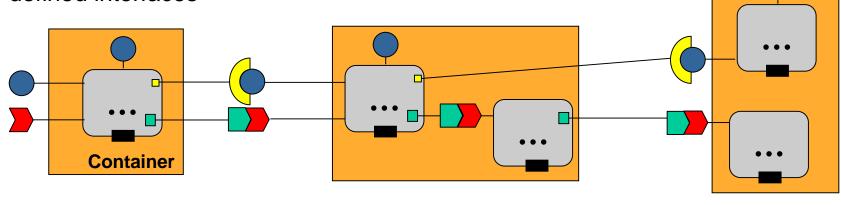
Drawbacks of DOC-based CORBA 2.x Middleware

CORBA 2.x application development is unnecessarily tedious & error-prone

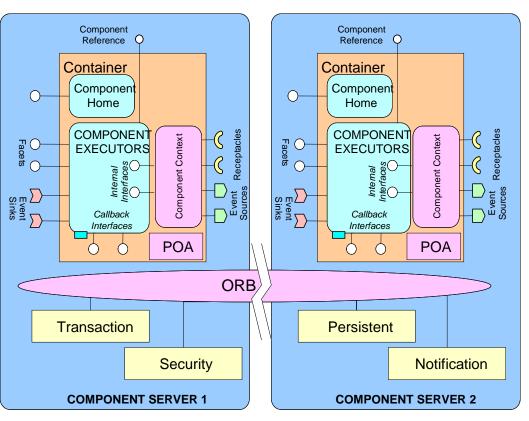

- CORBA 2.x IDL doesn't provide a way to group together related interfaces to offer a service family
 - Such "bundling" must be done by developers via CORBA idioms & patterns
- CORBA 2.x doesn't specify how configuration
 & deployment of objects should be done to
 create complete applications
 - Proprietary infrastructure & scripts are written by developers to enable this

Example: Limitations of CORBA 2.x Specification

- Requirements of non-trivial DRE systems:
 - Collaboration of multiple objects & services
 - Deployment on diverse platforms
- CORBA 2.x limitations lack of standards for
 - -Server/node configuration
 - Object/service configuration
 - Application assembly
 - -Object/service deployment
- Consequences:
 - Brittle, non-scalable implementation
 - -Hard to adapt & maintain
 - -Increased time-to-market

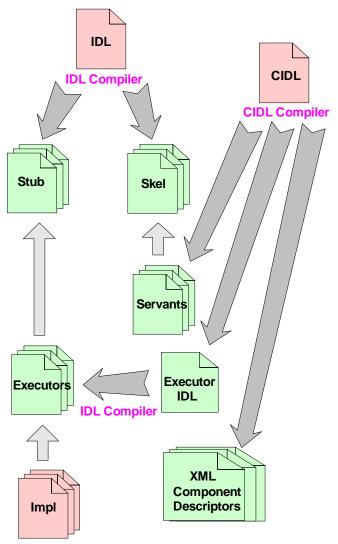


Solution: Component Middleware


- Creates a standard
 "virtual boundary" around
 application component
 implementations that
 interact only via well defined interfaces
- Define standard
 container mechanisms
 needed to execute
 components in generic
 component servers
- Specify the infrastructure needed to configure & deploy components throughout a distributed system

Overview of the Lightweight CORBA Component Model (CCM)

 Containers define operations that enable component executors to access common middleware services & runtime policies


Component Server

- A generic server process for hosting containers & component/home executors
- Component Implementation Framework (CIF)
 - Automates the implementation of many component features
- Component packaging tools
 - Compose implementation & configuration information into deployable assemblies
- Component deployment tools
 - Automate the deployment of component assemblies to component servers

Component Server

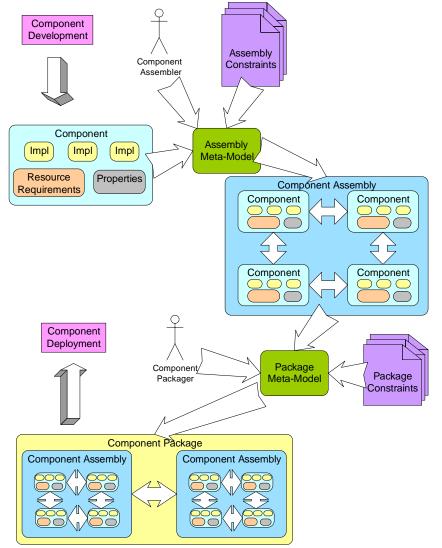
 A generic server process for hosting containers & component/home executors

Component Implementation Framework (CIF)

 Automates the implementation of many component features

Component packaging tools

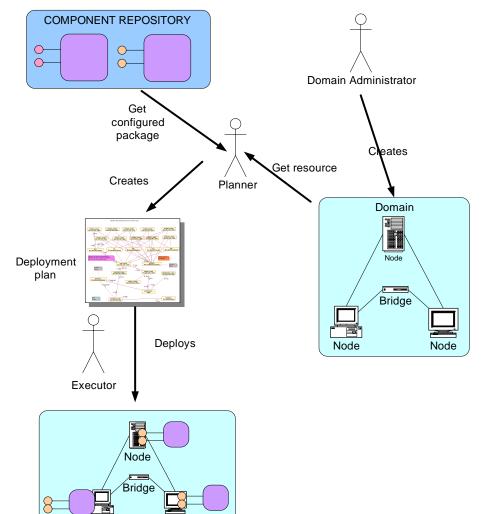
Compose implementation & configuration information into deployable assemblies


Component deployment tools

 Automate the deployment of component assemblies to component servers

Component Server

- A generic server process for hosting containers & component/home executors
- Component Implementation Framework (CIF)
 - Automates the implementation of many component features


Component packaging tools

- Compose implementation & configuration information into deployable assemblies
- Component deployment tools
 - Automate the deployment of component assemblies to component servers

Component Server

- A generic server process for hosting containers & component/home executors
- Component Implementation Framework (CIF)
 - Automates the implementation of many component features
- Component packaging tools
 - Compose implementation & configuration information into deployable assemblies

Component deployment tools

 Automate the deployment of component assemblies to component servers

Node

Node

Available CCM Implementations

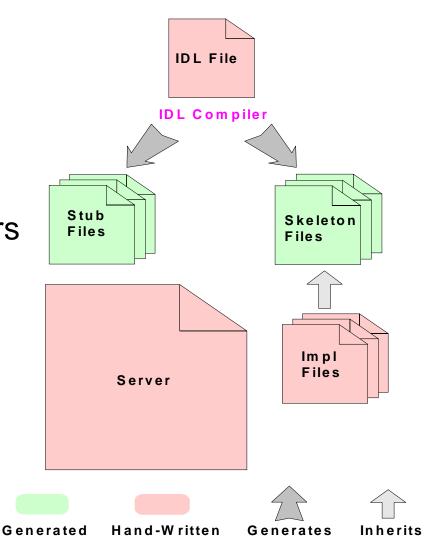
Name	Provider	Open Source	Language	URL
Component Integrated ACE ORB (CIAO)	Vanderbilt University & Washington University	Yes	C++	www.dre.vanderbilt.edu/CIAO/
Enterprise Java CORBA Component Model (EJCCM)	Computational Physics, Inc.	Yes	Java	www.cpi.com/ejccm/
K2	iCMG	No	C++	www.icmgworld.com/ products.asp
MicoCCM	FPX	Yes	C++	www.fpx.de/MicoCCM/
OpenCCM	ObjectWeb	Yes	Java	openccm.objectweb.org/
QoS Enabled Distributed Object (Qedo)	Fokus	Yes	C++	www.qedo.org
StarCCM	Source Forge	Yes	C++	sourceforge.net/projects/ starccm/

CCM Compared to EJB, COM, & .NET

- Like Sun Microsystems' Enterprise Java Beans (EJB)
 - CORBA components created & managed by <u>homes</u>
 - Run in <u>containers</u>
 that manage system
 services
 transparently
 - Hosted by generic application component servers
 - But can be written in more languages than Java

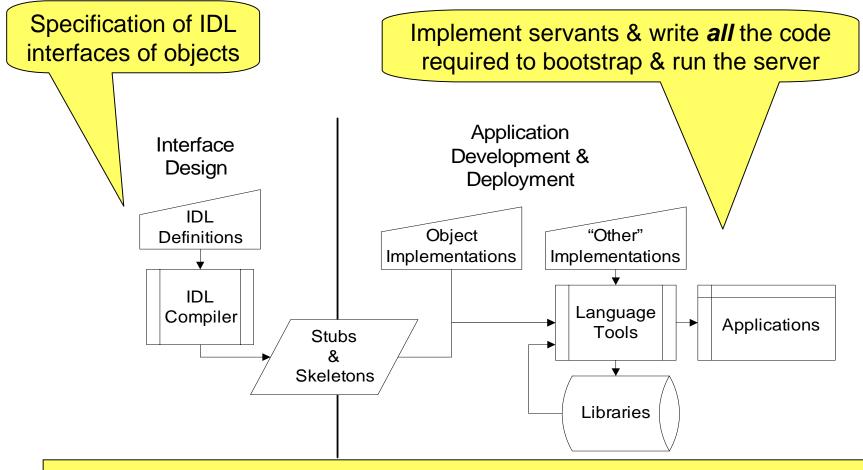
- Like Microsoft's Component Object Model (COM)
 - Have <u>several input & output interfaces</u> per component
 - Both point-to-point sync/async operations
 & publish/subscribe events
 - Component <u>navigation</u>
 <u>& introspection</u>
 capabilities
 - But has more effective support for distribution
 QoS properties

- Like
 Microsoft's .NET
 Framework
 - Could be written in <u>different</u> <u>programming</u> <u>languages</u>
 - Could be packaged to be distributed
 - But runs on more platforms than just Microsoft Windows


Comparing Application Development with CORBA 2.x vs. CCM

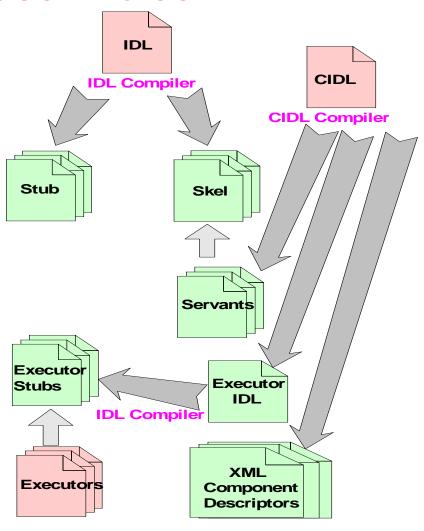
CORBA 2.x User Roles

- Object interface designers
- Server developers
- Client application developers

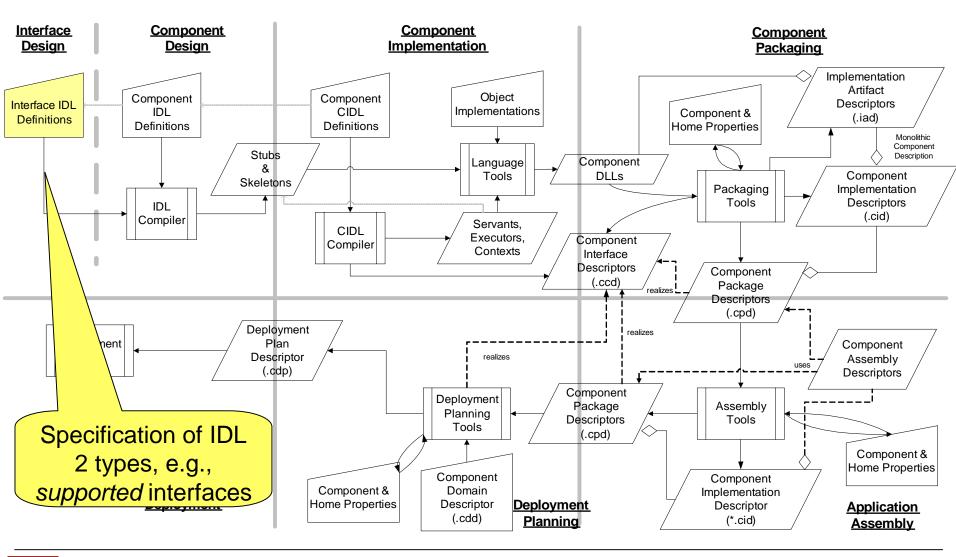


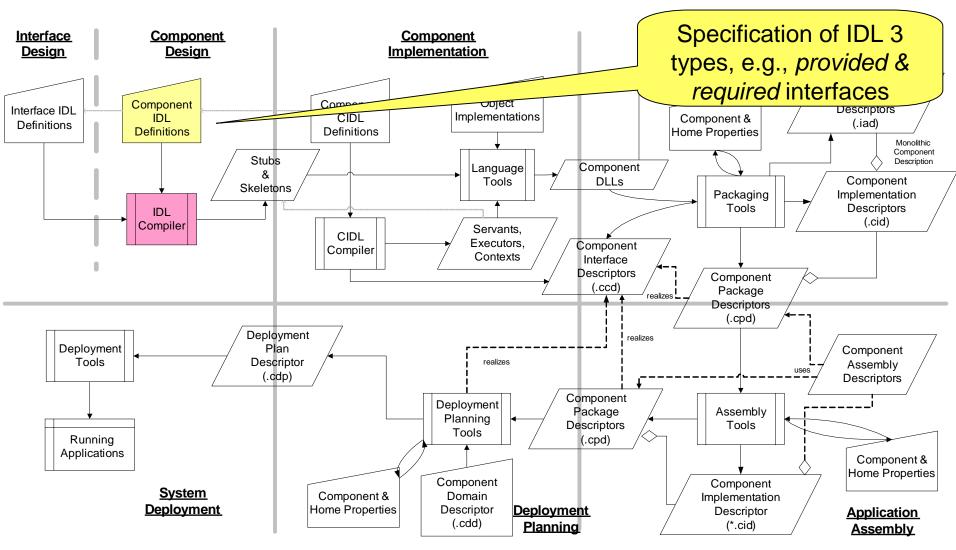
CORBA 2.x Application Development Lifecycle

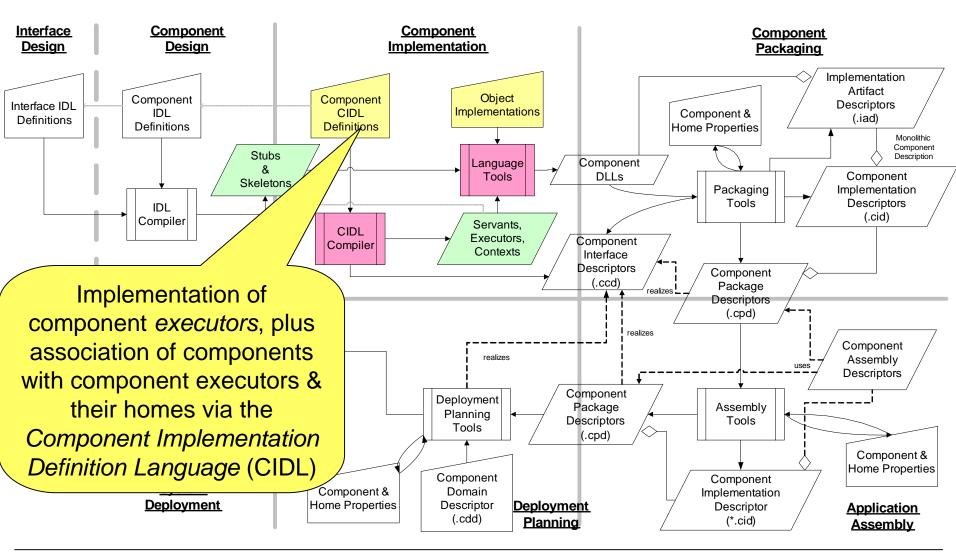
CORBA 2.x supports programming by development (engineering) rather than programming by assembly (manufacturing)

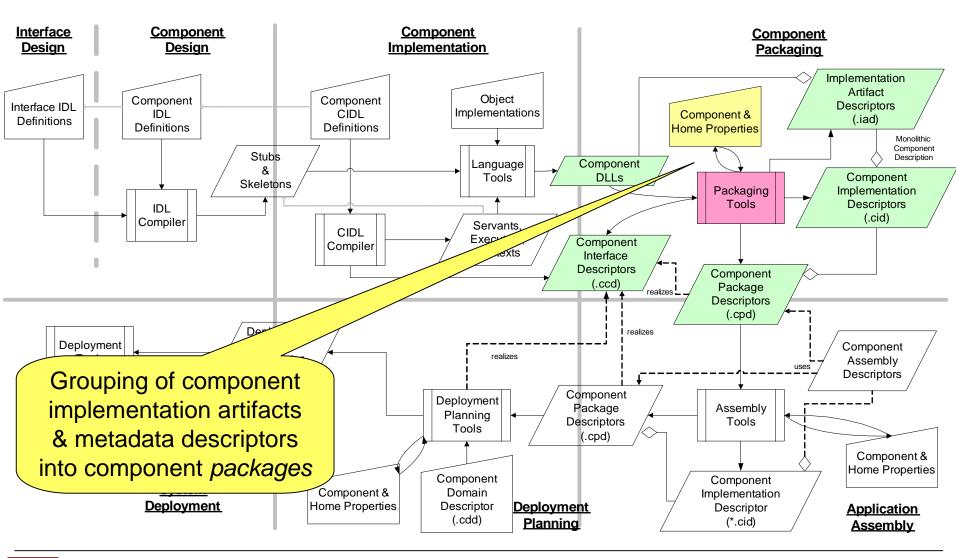


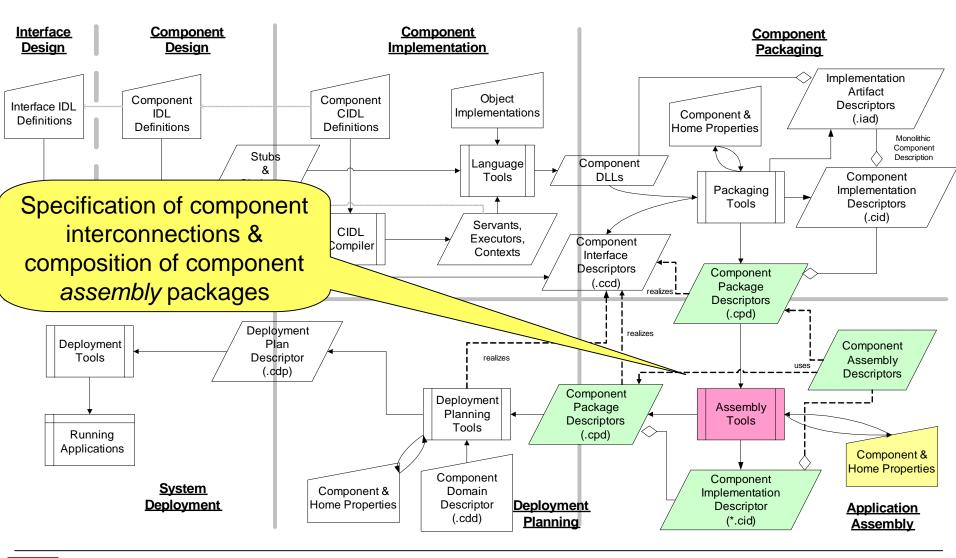
CCM User Roles

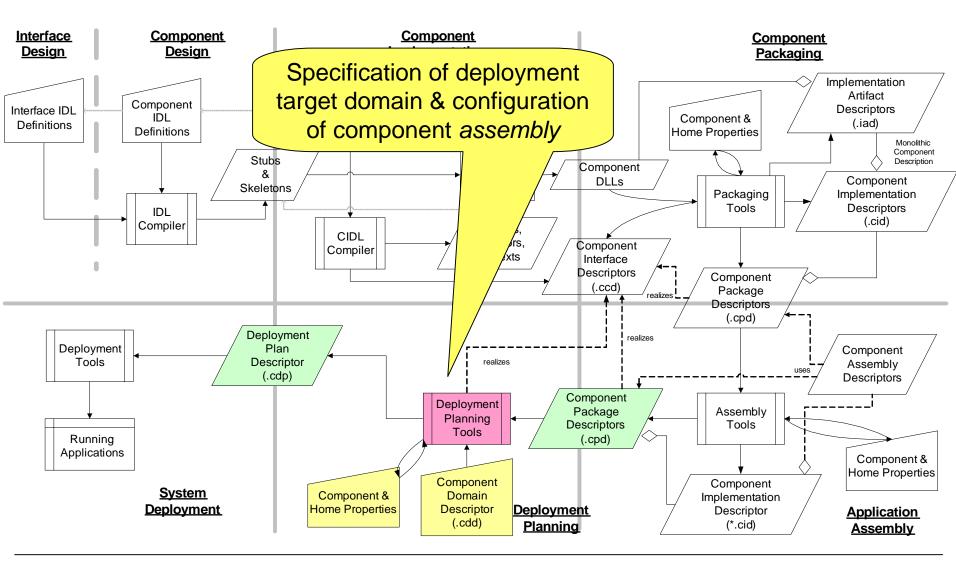

- Component designers
- Component clients
- Composition designers
- Component implementers
- Component packagers
- Component deployers
- Component end-users

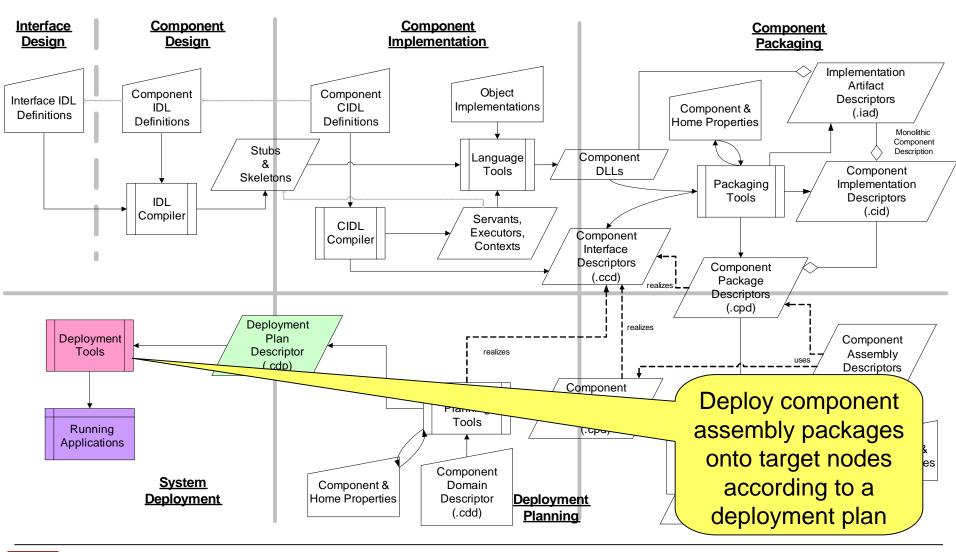


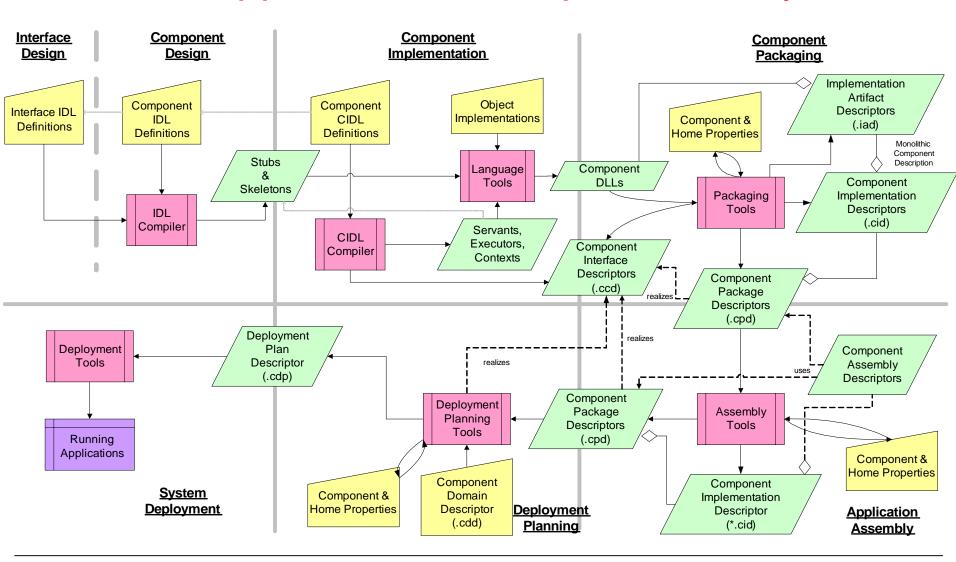












CORBA Component Model (CCM) Features

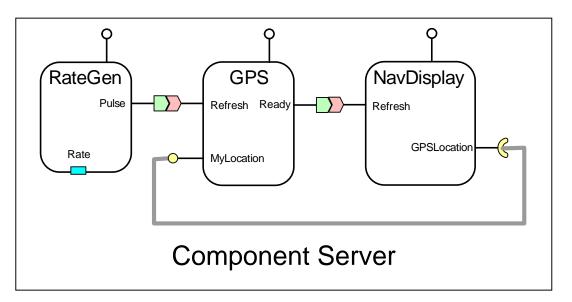
Example CCM DRE Application

Avionics example used throughout tutorial as typical DRE application

Sends periodic Pulse eventsto consumers

• Positioning Sensor

- Receives Refresh events
 from suppliers
- Refreshes cached coordinates available thru MyLocation facet
- Notifies subscribers via
 Ready events

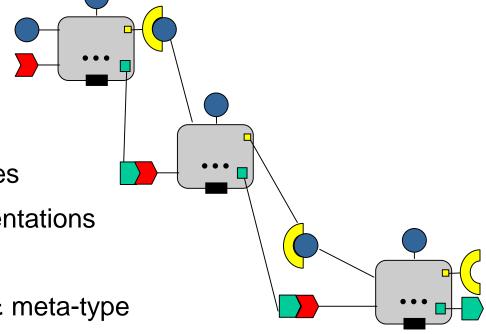

· Display Device

- Receives Refresh events
 from suppliers
- Reads current coordinates via its GPSLocation receptacle
- Updates display

Positioning Sensor

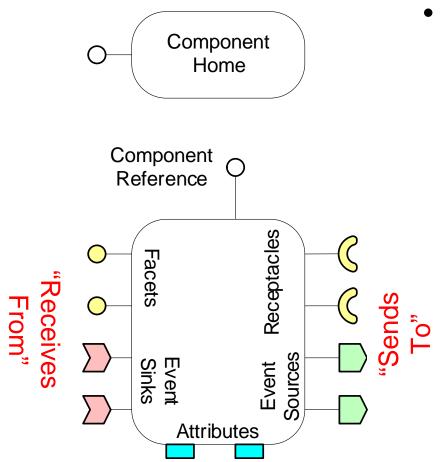
Display Device

\$CIAO_ROOT/examples/OEP/Display/



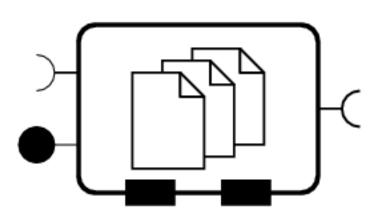
Unit of Business Logic & Composition in CCM

- Context
 - -Development via composition
- Problems
 - -CORBA 2.x object limitations
 - Objects just identify interfaces
 - No direct relation w/implementations
- CCM Solution
 - -Define CORBA 3.0 component meta-type
 - Extension of CORBA 2.x Object interface
 - Has interface & object reference
 - Essentially a stylized use of CORBA interfaces/objects
 - -i.e., CORBA 3.x IDL maps onto equivalent CORBA 2.x IDL



CORBA Component Ports

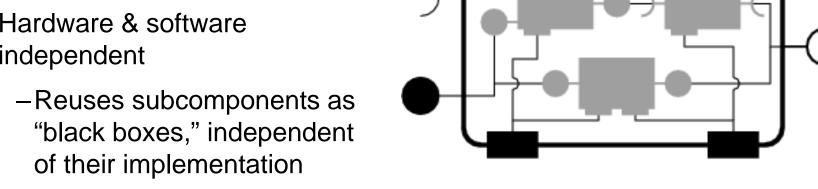
- A CORBA component can contain ports:
 - Facets (provides)
 - Offers operation interfaces
 - Receptacles (uses)
 - Required operation interfaces
 - Event sources (publishes & emits)
 - Produced events
 - Event sinks (consumes)
 - Consumed events
 - Attributes (attribute)
 - Configurable properties
- Each component instance is created & managed by a unique component home



Monolithic Component Implementation

- Executable piece of software
 - One or more "implementation artifacts"(e.g., .exe, .so, .o, .class)
 - Zero or more supporting artifacts (e.g., configuration files)
- May have hardware or software requirements/constraints
 - -Specific CPU (e.g., x86, PPC, SPARC)
 - Specific OS (e.g., Windows, VxWorks, Linux, Solaris)
 - -Hardware devices (e.g., GPS sensor)

Described by metadata, e.g.,
*.ccd, *.iad, & *.cid files



Assembly-based Component Implementation

- Set of interconnected (sub)components
- Hardware & software independent

- Implements a specific (virtual) component interface
 - -i.e., external ports & attributes are "mapped" to *internal* subcomponents
- Assemblies are fully reusable
 - –Can be "standalone" applications or reusable components

- Assemblies are hierarchical
 - •i.e., can be used in an encompassing assembly
 - Note recursion here...
- Described by metadata, e.g., *.ccd & *.cid files

Simple CCM Component Example

```
// IDL 3
interface rate control
  void start ();
 void stop ();
};
component RateGen
  supports rate_control {};
                   RateGen
                     Rate
// Equivalent IDL 2
interface RateGen :
  :: Components:: CCMObject,
  rate_control {};
```

- Roles played by CCM component
 - Define a unit of composition, reuse, & implementation
 - Encapsulate an interaction & configuration model
- A CORBA component has several derivation options, i.e.,
 - -It can *inherit* from a single component type

```
component E : D {};
```

-It can *support* multiple IDL interfaces

```
interface A {};
interface B {};
component D supports A, B {};
```


Managing Component Lifecycle

- Context
 - Components need to be created by the CCM run-time
- Problems with CORBA 2.x
 - No standard way to manage component's lifecycle
 - Need standard mechanisms to strategize lifecycle management

- CCM Solution
 - Integrate lifecycle service into component definitions
 - Use different component home's to provide different lifecycle managing strategies
 - Based on Factory & Finder patterns

A CORBA Component Home

```
// IDL 3
home RateGenHome manages RateGen
  factory create pulser
    (in rateHz r);
                             RateGenHome
};
                             RateGen
                                  Pulse
                               Rate
   Equivalent IDL 2
interface RateGenHomeExplicit
: Components::CCMHome {
 RateGen create pulser
  (in rateHz r);
};
interface RateGenHomeImplicit
: Components::KeylessCCMHome {
  RateGen create ();
};
interface RateGenHome :
 RateGenHomeExplicit,
 RateGenHomeImplicit {};
```

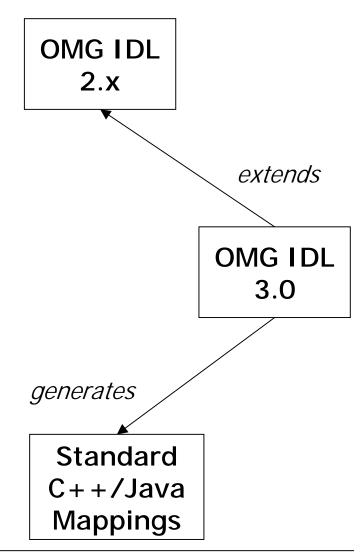
- home is new CORBA meta-type
 - A home has an interface & object reference
- Manages one type of component
 - More than one home type can manage same component type
 - However, a component instance is managed by one home instance
- Standard factory & finder operations
 - -e.g., create()
- home can have user-defined operations

A Quick CCM Client Example

Component & Home for Simple HelloWorld

```
interface Hello {
  void sayHello (in string username);
};
interface Goodbye {
  void sayGoodbye (in string username);
};
component HelloWorld supports Hello {
      provides Goodbye Farewell;
};
home HelloHome manages HelloWorld {};
```

- IDL 3 definitions for
 - Component: HelloWorld
 - Managing home: HelloHome
- Example in \$CIAO_ROOT/docs/tutorial/Hello/



The Client OMG IDL Mapping

- As we've seen, each OMG IDL 3.0 construction has an equivalent in terms of OMG IDL 2.x
- Component & home types are viewed by clients through the CCM client-side OMG IDL mapping
- This mapping requires no change in CORBA's client programming language mapping
 - -i.e., clients still use their favorite IDLoriented tools, such as CORBA stub generators, etc.
- Clients need not be "component-aware"
 - –i.e., they can just invoke interface operations

Simple Client for Helloworld Component

```
1 int
 2 main (int argc, char *argv[])
 3 {
     CORBA::ORB var orb =
 4
 5
       CORBA::ORB_init (argc, argv);
     CORBA::Object var o =
       orb->resolve initial references
 8
               ("NameService");
     CosNaming::NamingContextExt var nc =
10
       CosNaming::NamingContextExt:: narrow (o);
11
     o = nc->resolve str ("myHelloHome");
12
     HelloHome var hh = HelloHome:: narrow (o);
13
     HelloWorld var hw = hh->create ();
14
     hw->sayHello ("Dennis & Brian");
15
     hw->remove ();
16
     return 0;
17 }
```

\$./hello-client # Triggers this on the server:
Hello World! -- from Dennis & Brian.

- Lines 4-10: Perform standard ORB bootstrapping
- Lines 11-12: Obtain object reference to home via Naming Service
- Line 13: Use home to create component
- Line 14: Invoke remote operation
- Line 15: Remove component instance
- Clients don't always need to manage component lifecycle directly

CCM Component Features in Depth

www.cs.wustl.edu/~schmidt/cuj-17.doc

Components Can Offer Different Views

- Context
 - -Components need to collaborate with other types of components
 - -These collaborating components may understand different interfaces
- Problems with CORBA 2.x
 - -Hard to extend interface without breaking/bloating it
 - -No standard way to acquire new interfaces
- CCM Solution
 - Define facets, a.k.a. provided interfaces, that embody a view of the component & correspond to roles in which a client may act relatively to the component
 - Represents the "top of the Lego"

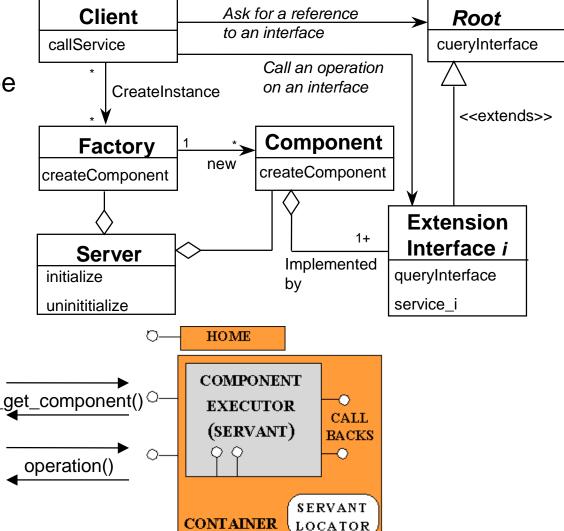
Component Facets

- Facet characteristics:
 - -Define *provided* operation interfaces
 - Specified with provides keyword
 - Logically represents the component itself, not a separate entity contained by the component
 - However, facets have independent object references obtained from provide_*() factory operation
 - Can be used to implement
 Extension Interface pattern

```
// IDL 3
interface position
  long get_pos ();
component GPS
  provides position MyLocation;
                                   GPS
                                 Refresh Ready
   Equivalent IDL 2
interface GPS
                                 MyLocation
  : Components::CCMObject
```

provide MyLocation ();

position


Extension Interface Pattern

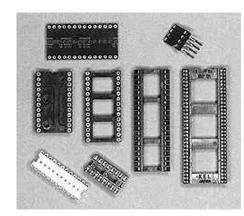
The Extension Interface design pattern (POSA2) allows multiple interfaces to be exported by a component to prevent

- breaking of client code &
- bloating of interfaces

when developers extend or modify component functionality

: Client





Using Other Components

- Context
 - Components need to collaborate with several different types of components/applications
 - These collaborating components/applications may provide different types of interfaces
- Problems with CORBA 2.x
 - -No standard way to specify interface dependencies
 - No standard way to connect an interface to a component
- CCM Solution
 - Define receptacles, a.k.a. required interfaces, which are distinct named connection points for potential connectivity
 - Represents the "bottom of the Lego"

Component Receptacles

// IDL 3
component NavDisplay
{
...
uses position GPSLocation;
...
};

Receptacle characteristics

- Define a way to connect one or more required interfaces to this component
 - Specified with uses (multiple) keyword
 - Can be simplex or multiplex
 - Connections are established statically via tools during deployment phase
 - Connections are managed
 dynamically at run-time by
 containers to offer interactions
 with clients or other components
 via callbacks
 - CCM also enables connection establishment during run-time

...
void connect_GPSLocation
 (in position c);

: Components::CCMObject

Equivalent IDL 2

interface NavDisplay

position disconnect_GPSLocation();

position get_connection_GPSLocation ();

};

NavDisplay

GPSLocation

Refresh

Event Passing

- Context
 - Components often want to communicate using publisher/subscriber message passing mechanism
- Problems with CORBA 2.x
 - Standard CORBA Event Service is dynamically typed, i.e., there's no static type-checking connecting publishers/subscribe
 - Non-trivial to extend request/response interfaces to support event passing
 - No standard way to specify an object's capability to generate & process events
- CCM Solution
 - -Standard eventtype & eventtype consumer interface (which are based on valuetypes)
 - –Event sources & event sinks ("push mode" only)

Component Events

```
IDL 3
eventtype tick
 public rateHz Rate;
};
                                  Rate
  Equivalent IDL 2
valuetype tick : Components::EventBase
  public rateHz Rate;
};
interface tickConsumer :
  Components::EventConsumerBase {
  void push_tick
    (in tick the tick);
};
```

```
RateGen
Pulse
Publisher
Consumer
MyLocation
```

- Events are implemented as IDL valuetypes
- Defined with the new IDL 3
 eventtype keyword
 - This keyword triggers generation of additional interfaces & glue code

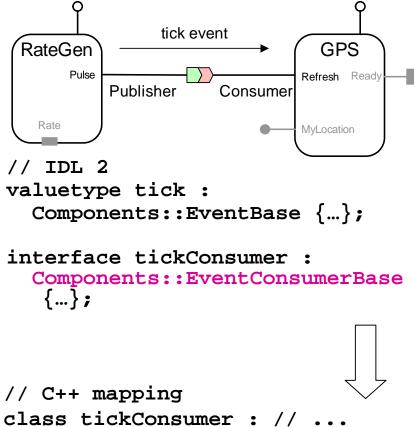
Component Event Sources

```
// IDL 3
component RateGen
  publishes tick Pulse;
  emits tick Trigger;
};
                        RateGen
                             Pulse
                          Rate
  Equivalent IDL 2
interface RateGen :
  Components::CCMObject {
  Components::Cookie
    subscribe Pulse
    (in tickConsumer c);
  tickConsumer
    unsubscribe Pulse
    (in Components::Cookie ck);
```

- Event source characteristics
 - Named connection points for event production
 - Two kinds of event sources: publisher
 & emitter
 - •publishes = may be multiple consumers
 - •emits = only one consumer
 - Two ways to connect with event sinks
 - 1. Consumer connects directly
 - 2.CCM container mediates access to CosNotification/CosEvent channels or other event delivery mechanism (e.g., OMG DDS, RtEC, etc.)

Component Event Sinks

```
// IDL 3
component NavDisplay
 consumes tick Refresh;
};
                              NavDisplay
                              Refresh
                                  GetLocation
   Equivalent IDL 2
interface NavDisplay:
  Components::CCMObject
 tickConsumer
   get consumer Refresh ();
```


- Event sink characteristics
 - Named connection points into which events of a specific type may be pushed
 - Multiple event sinks of same type can subscribe to the same event sources
 - No distinction between emitter& publisher
 - -Connected to event sources via object reference obtained from get_consumer_*() factory operation

CCM Events

virtual void push event

- Context
 - -Generic event push() operation requires a generic event type
- Problem
 - -User-defined eventtypes are not generic
- CCM Solution
 - EventBase abstract valuetype

```
module Components
                                 abstract valuetype EventBase {};
                                 interface EventConsumerBase {
                                   void push event (in EventBase evt);
(Components::EventBase *evt);
```


Connecting Components

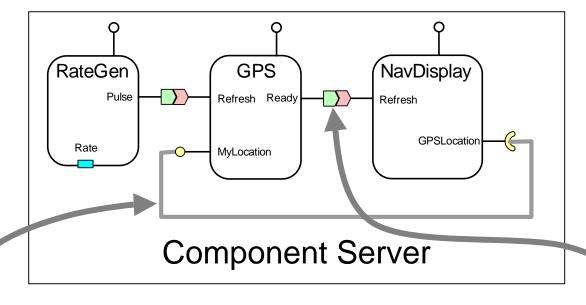
- Context
 - Components need to be connected together to form complete applications
- Problems
 - Components can have multiple ports with different types & names
 - It's not scalable to write code manually to connect a set of components for a specific application

- CCM Solutions
 - Provide introspection interface to discover component capability
 - Provide generic port operations to connect components using external deployment & configuration tools
 - Represents snapping the lego bricks together

Generic Port Operations

Port	Equivalent IDL2 Operations	Generic Port Operations (CCMObject)
Facets	<pre>provide_name ();</pre>	<pre>provide ("name");</pre>
Receptacles	<pre>connect_name (con); disconnect_name ();</pre>	<pre>connect ("name", con); disconnect ("name");</pre>
Event sources (publishes only)	<pre>subscribe_name (c); unsubscribe_name ();</pre>	<pre>subscribe ("name", c); unsubscribe ("name");</pre>
Event sinks	<pre>get_consumer_name();</pre>	<pre>get_consumer ("name");</pre>

- Generic port operations for provides, uses, subscribes, emits, & consumes keywords are auto-generated by the CIDL compiler
 - Apply the Extension Interface pattern
 - Used by CCM deployment & configuration tools
 - Lightweight CCM spec doesn't include equivalent IDL 2 operations

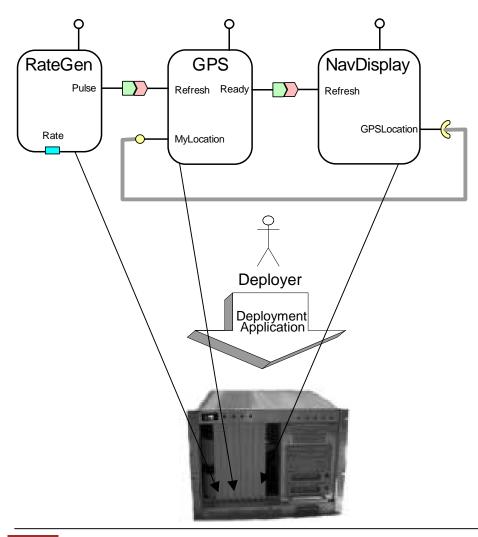


Example of Connecting Components

CCM components are connected via deployment tools during launch phase


```
• Facet → Receptacle
  objref = GPS->provide
    ("MyLocation");
  NavDisplay->connect
    ("GPSLocation", objref);
```

```
• Event Source → Event Sink
consumer = NavDisplay->
  get_consumer ("Refresh")
GPS->subscribe
  ("Ready", consumer);
```

Component & Deployment & Configuration

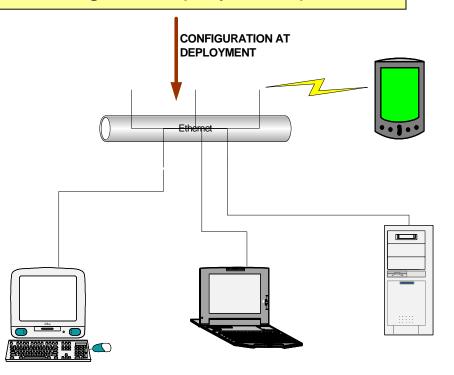
Overview of Deployment & Configuration Process

- Goals
 - Ease component reuse
 - Build complex applications by assembling existing components
 - Deploy component-based application into heterogeneous domain(s)
- Separation of concerns & roles
 - Component development & packaging
 - Application assembly
 - Application configuration
 - Application deployment
 - Server configuration

Component Configuration Problem

Component middleware & applications are characterized by a large configuration space that maps known variations in the application requirements space to known variations in the solution space

- Components interact with other software artifacts & environment to achieve specific functions
 - -e.g., using a specific run-time library to encrypt & decrypt data
- Some prior knowledge of the run-time environment may be required during development
 - -e.g., rates of certain tasks based on the functional role played
- Need to configure the middleware for specific QoS properties
 - -e.g., transport protocols, timeouts, event correlation, concurrency/synchronization models, etc.
- Adding environment & interaction details with the business logic leads to overly tight coupling
 - e.g., tightly coupled code leads to poor reusability & limited QoS



CCM Configuration Concept & Solution

Concept

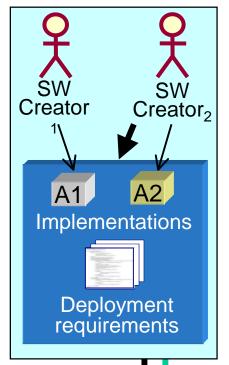
 Configure run-time & environment properties late in the software lifecycle, i.e., during the deployment process

Solution

- Well-defined exchange formats to represent configuration properties
 - Can represent a wide variety of data types
 - Well-defined semantics to interpret the data
- Well-defined interfaces to pass configuration data from "off-line" tools to components
- Well-defined configuration
 boundary between the application
 & the middleware

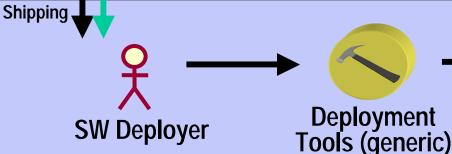
Component Deployment Problem

- Component implementations are usually hardware-specific
 - -Compiled for Windows, Linux, Java or just FPGA firmware
 - -Require special hardware
 - e.g., GPS sensor component needs access to GPS device via a serial bus or USB
 - e.g., Navigation display component needs ... a display
 - -not as trivial as it may sound!
- However, computers & networks are often heterogeneous
 - Not all computers can execute all component implementations
- The above is true for each & every component of an application
 - -i.e., each component may have different requirements



Infrastructure

Interfaces

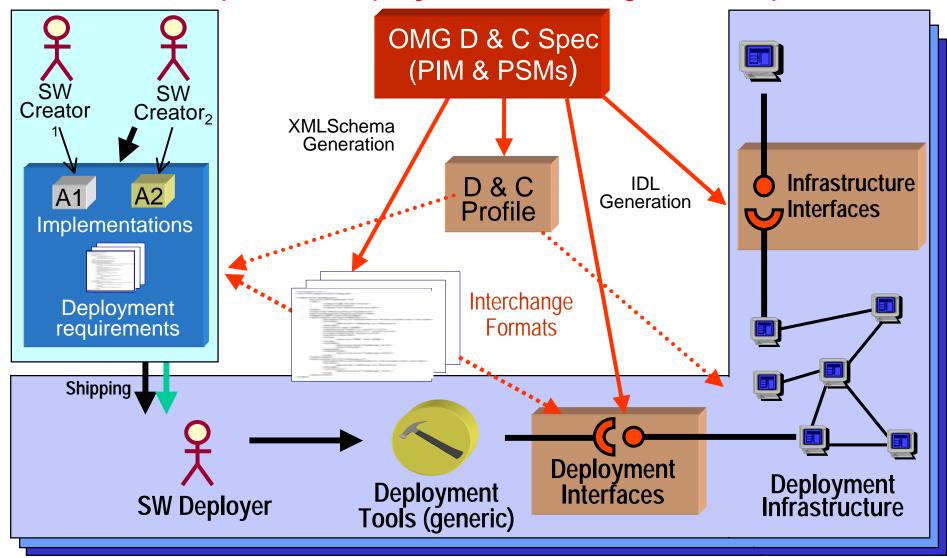


OMG Component Deployment & Configuration Spec (1/2)

Goals of D&C Phase

- Promote component reuse
- Build complex applications by assembling existing components
- Automate common services configuration
- Declaratively inject QoS policies into applications
- Dynamically deploy components to target heterogeneous domains
- Optimize systems based on component configuration & deployment settings

Deployment Interfaces


Deployment Infrastructure

OMG Component Deployment & Configuration Spec (1/2)

CCM Deployment Solution

Well-defined exchange format

- -Defines what a software vendor delivers
- -Requires "off-line" data format that can be stored in XML files

Well-defined interfaces

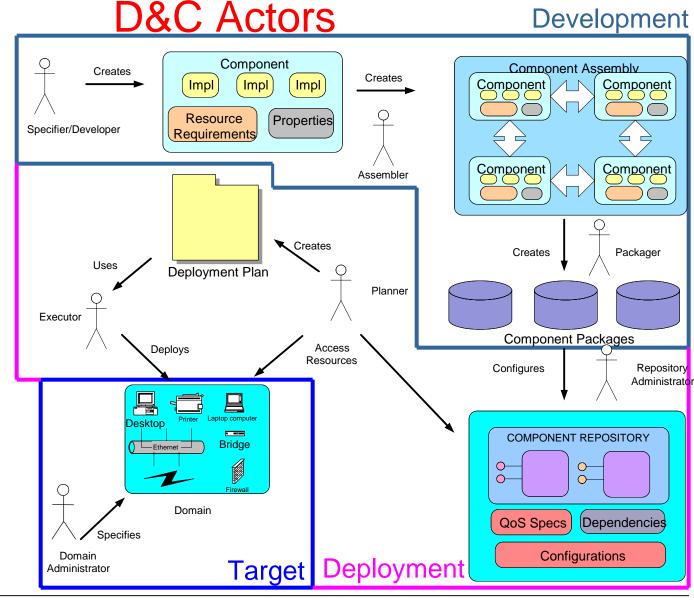
- -Infrastructure to install, configure, & deploy software
- Requires "on-line" IDL data format that can be passed to/from interfaces

Well-defined software metadata model

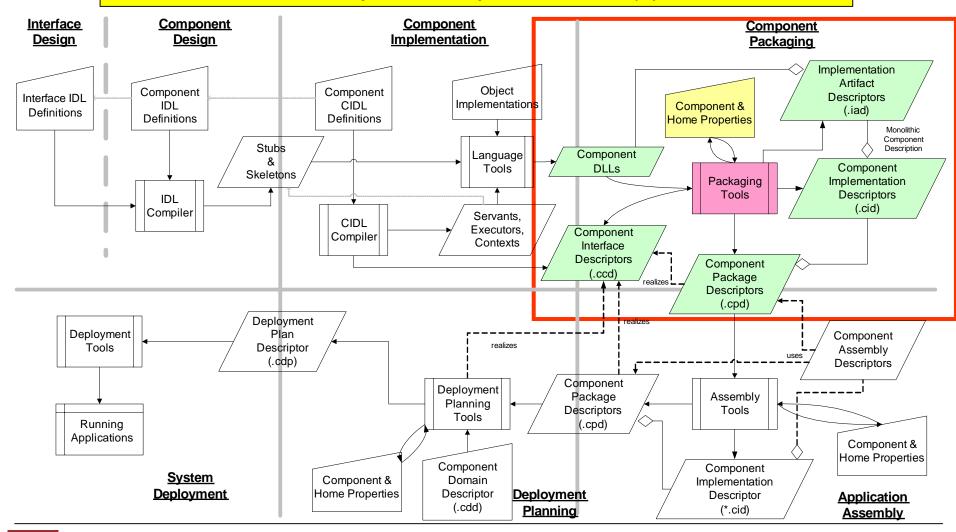
- Annotate software & hardware with interoperable, vendor-independent, deployment-relevant information
- —Generate "on-line" & "off-line" data formats from models
 - e.g., CoSMIC at www.dre.vanderbilt.edu/cosmic

Deployment & Configuration "Segments"

PIM	Data Model	Run-time Model
Component Software	Metadata to describe component-based applications & their requirements	Repository Manager interfaces to browse, store, & retrieve such metadata
Target	Metadata to describe heterogeneous distributed systems & their capabilities	Target Manager interfaces to collect & retrieve such metadata & commit resources
Execution	Metadata to describe a specific deployment plan for an application into a distributed system	Execution Manager interfaces to prepare environment, execute deployment plan on target, manage lifecycle

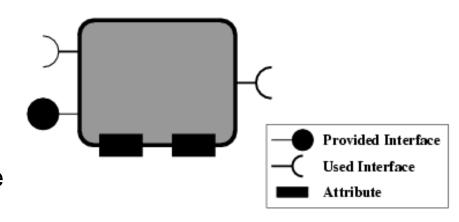

- Data model
 - Metadata, usually in XML format
- •Run-time model
 - Deployment interfaces (similar to CORBA services)

- Different stages & different actors
 - Development
 - Specifier/ Developer
 - Assembler
 - Packager
 - Target
 - Domain Administrator
 - Deployment
 - Repository Administrator
 - Planner
 - Executor
- Actors are abstract
 - Usually humans& software tools



Component Packaging

Goal: Associate component implementation(s) with metadata



Component-based Software: Component

Component

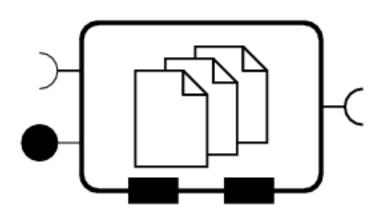
- -Modular
- -Encapsulates its contents
- Replaceable "black box",
 conformance defined by interface
 compatibility

Component Interface

- -"Ports" consist of provided interfaces (facets) & required (used) interfaces (receptacles)
- -Attributes

Component Implementation

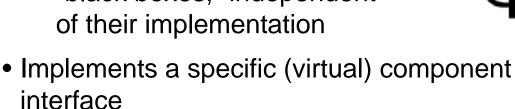
- "Monolithic" (i.e., executable software) or
- -"Assembly-based" (a set of interconnected subcomponents)

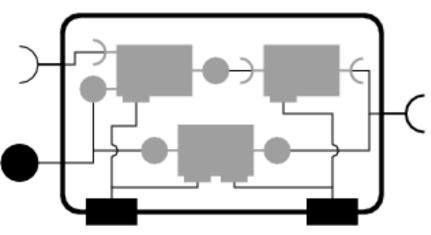


Monolithic Component Implementation

- Executable piece of software
 - One or more "implementation artifacts"(e.g., .exe, .so, .o, .class)
 - Zero or more supporting artifacts (e.g., configuration files)
- May have hardware or software requirements/constraints
 - -Specific CPU (e.g., x86, PPC, SPARC)
 - Specific OS (e.g., Windows, VxWorks, Linux, Solaris)
 - -Hardware devices (e.g., GPS sensor)

Described by *.ccd,*.iad, & *.cid files





Assembly-based Component Implementation

- Set of interconnected (sub)components
- Hardware & software independent
 - Reuses subcomponents as "black boxes," independent of their implementation

- -i.e., external ports & attributes are "mapped" to internal subcomponents
- Assemblies are fully reusable
 - Can be "standalone" applications or reusable components

- Assemblies are hierarchical
 - •i.e., can be used in an encompassing assembly
 - Note recursion here...
- Described by *.ccd & *.cid files

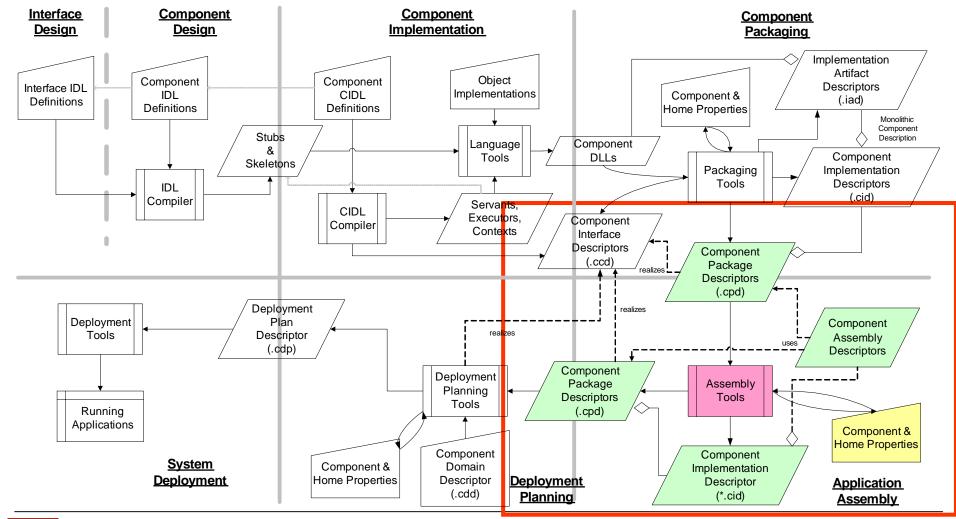
Component Package

- A set of alternative, replaceable implementations of same component interface
 - –e.g., implementations for Windows, Linux, and/or JVM
- Can be a mix of monolithic & assembly-based implementations
 - -e.g., a parallel, scalable implementation for a Solaris symmetric multiprocessor or a single monolithic Java component
- Implementations may have different "quality of service" (QoS)
 - –e.g., latency, resolution, security
- "Best" implementation is chosen at deployment time by *Planner*
 - Based on available hardware & QoS requirements

Implementation

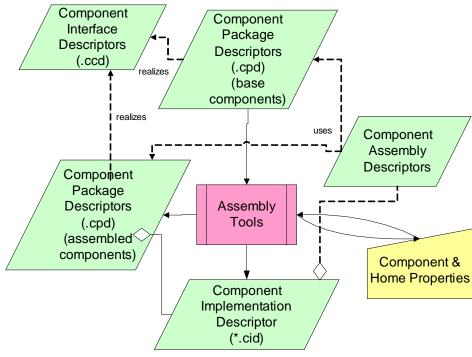
Component Packaging Tools

- Goals
 - Extract systemic properties into metadata
 - Configure components, containers, target environment, & applications
 - Provide abstraction of *physical* information, e.g., OS version, location of DLLs, etc.
- Artifact **Descriptors** Component & (.iad) Home Properties Component Description Component **DLLs** Component Packaging Implementation **Descriptors Tools** (.cid) Component Interface **Descriptors** Component (.ccd) Package realizes **Descriptors** (.cpd)
- CCM component packages bring together
 - Multiple component implementations
 - Component properties
 - –Descriptors (XML Files)
 - Descriptors provide metadata that describe contents of a package, dependencies on other components, 3rd party DLLs, & value factories



Application Assembly

Goal: Group packages & metadata by specifying their interconnections

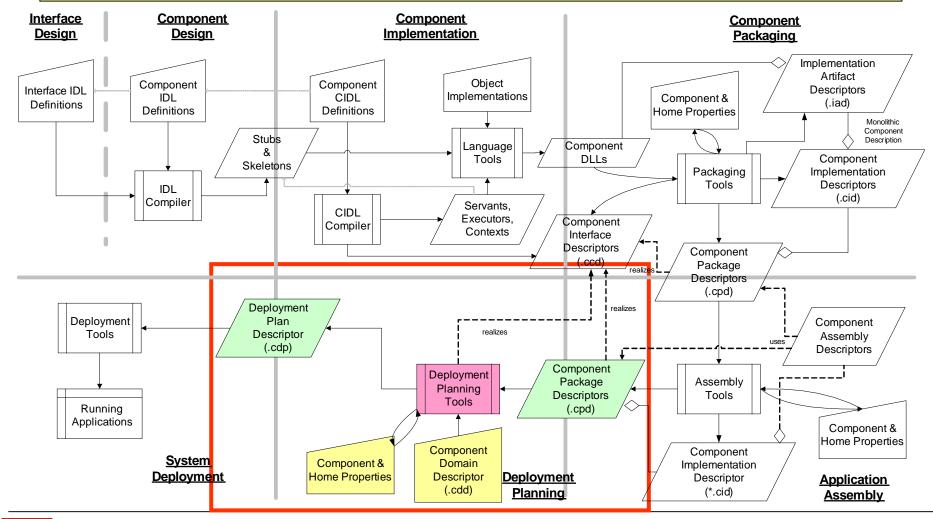


Application Assembly Tools

Goals

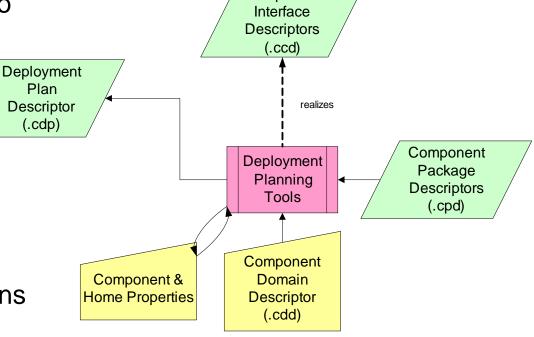
Compose higher level components from set of (sub)components

- Store composition & connection information as metadata
- Provide abstraction of *logical* information, e.g., interconnections
- Component assembly description specifies:
 - -Subcomponent packages
 - Subcomponent instantiation & configuration
 - -Interconnections
 - Mapping of ports & properties to subcomponents
- "Pure metadata" construct (no directly executable code, hardware-agnostic)



Deployment Planning

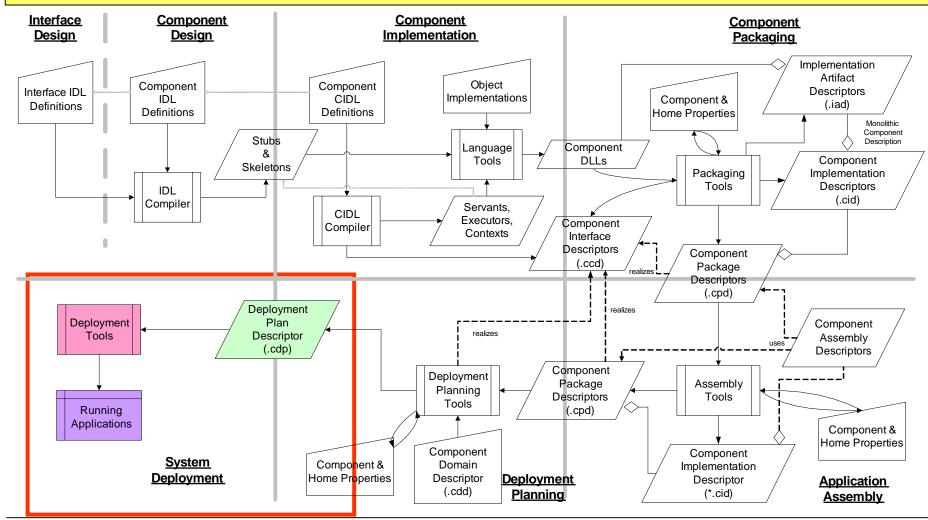
Goal: Map application assembly onto target environment via deployment plan



Deployment Planning Tools

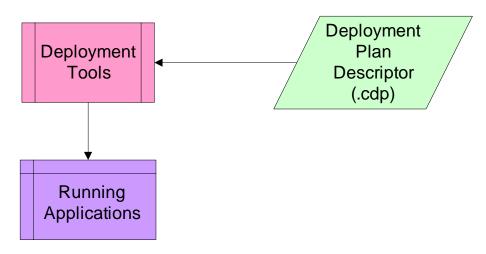
- Goals
 - Concretize deployment metadata
 - Using Deployment Domain to describe deployment environment
- Component Deployment Plan description:
 - Flatten the assembly hierarchy -- an assembly of monolithic components
 - Deployment details locations to deploy components
 - -Interconnections
 - -Mapping of ports & properties to subcomponents

Component

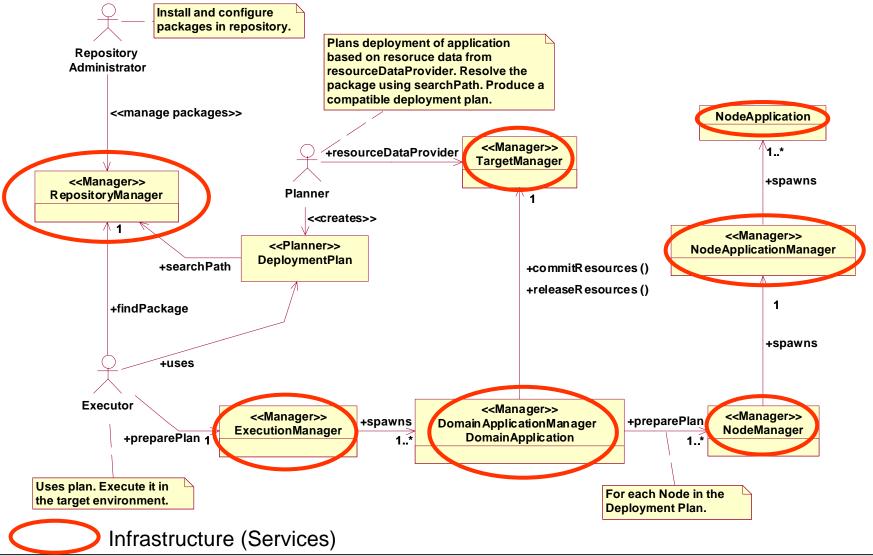


Deployment

Goal: Deploy/execute application/components according to deployment plan



Deployment Infrastructure Overview


- Goals
 - Realize a deployment plan on its target deployment platform
- Deployment phase includes:
 - -Performing work in the target environment to be ready to execute the software (such as downloading software binaries)
 - Install component instances into the target environment
 - Interconnecting & configuring component instances

Deployment Infrastructure Overview (1/2)

Deployment Infrastructure Overview (2/2)

Repository Manager

Database of components that are available for deployment ("staging area")

Target Manager

-R "Execution" Runtime Model available nodes & res

Execution Manager

Execution of an application according to a "Deployment Plan"

Domain Application Manager

Responsible for deploying an application at the domain level

Domain Application

Represents a "global" application
 t was deployed across nodes

"Component Software"
Runtime Model

naging a

portion of an application that's

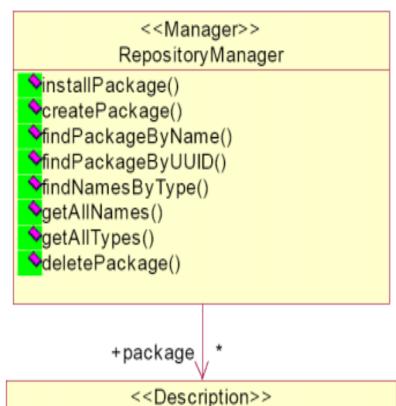
"Target" Runtime Model

• Noue Application manager

 Responsible for deploying a locality constrained application onto a node

Node Application

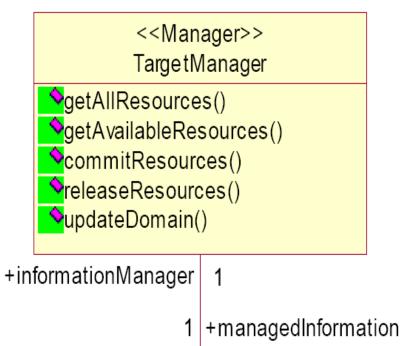
Represents a portion of an application that's executing within a single node

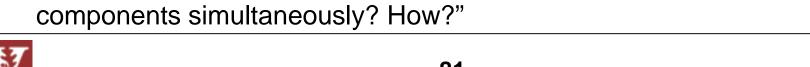


Deployment Infrastructure: Repository Manager

- Database of components
 - –Metadata (from Component Data Model)
 - Artifacts (i.e., executable monolithic implementations)
- Applications can be configured
 - -e.g., to apply custom policies, e.g.,
 "background color" = "blue"
- Applications are installed from packages
 - –ZIP files containing metadata in XML format & implementation artifacts
- CORBA interface for installation of packages retrieval, & introspection of metadata
- HTTP interface for downloading artifacts
 - Used by Node Managers during execution

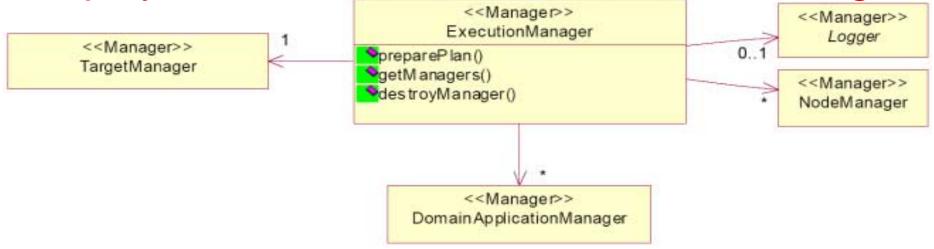
PackageConfiguration



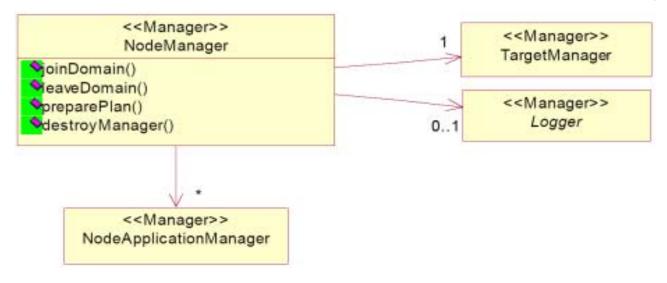

Deployment Infrastructure: Target Manager

- Singleton service, i.e., one *TargetManager* per domain
- Retrieval of available or total resource capacities
- Allocation & release of resources (during application deployment)
- No "live" monitoring of resources implied (optional)
 - Assumption: all resources are properly allocated & released through this interface
- Allows "off-line" scenarios where the possibility & the effect of deploying applications is analyzed
 - -e.g., "Given this configuration, is it possible to run this set of application components simultaneously? How?"

<<Domain Administrator>>

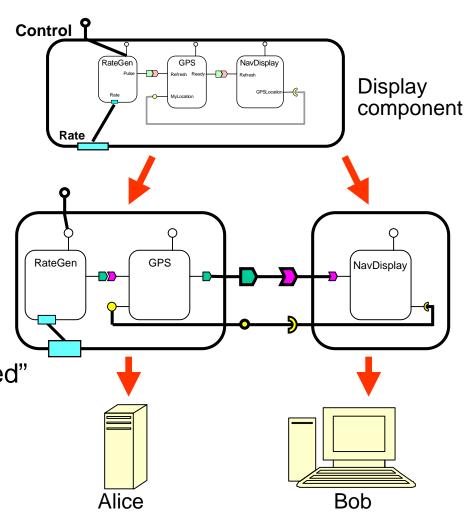

Domain

Deployment Infrastructure: Execution Manager


- Singleton service, i.e., one *ExecutionManager* per domain
- A "daemon-like" process always running in each domain
- User-visible front-end for executing a global (domain-level) deployment plan
 - Deployment plan results from planning for the deployment of an application, based on a specific set of nodes & resources
- Has information on all *NodeManagers* in the domain
- Instructs NodeManagers to execute respective per-node pieces of an application

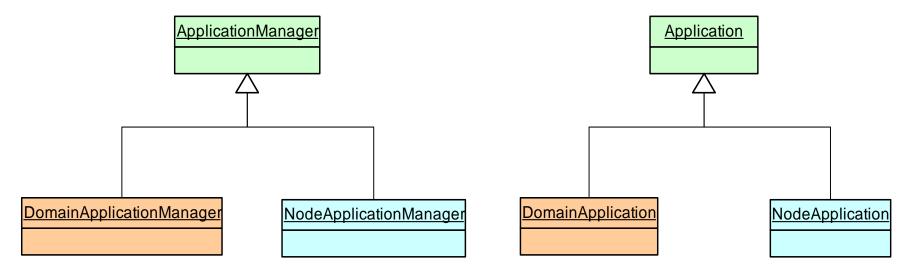
Deployment Infrastructure: Node Manager

- Mirrors the *ExecutionManager*, but is limited to one node only
- A "daemon-like" process that is always running on each individual node
- Responsible for deploying local (node-level) deployment plan

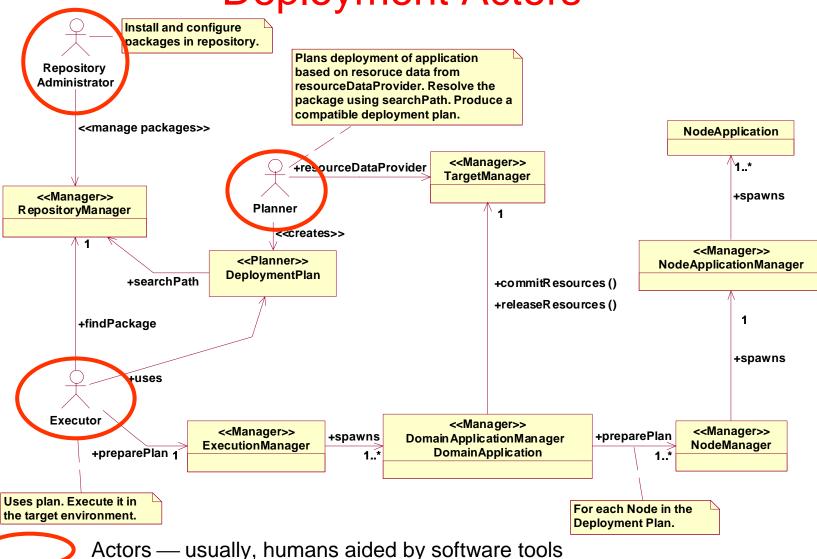


Execution/Node Managers Interaction

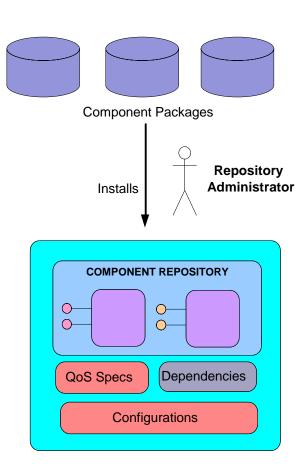
- ExecutionManager computes per-node Deployment Plan
 - -"Virtual" assemblies of components on the same node
 - Described using the same data structure
- All parts are sent to their respective NodeManager
 - -Processing can be concurrent
- ExecutionManager then sends "provided" references to their users
- Transparent to "Executor" user



Launch Application: Domain vs. Node

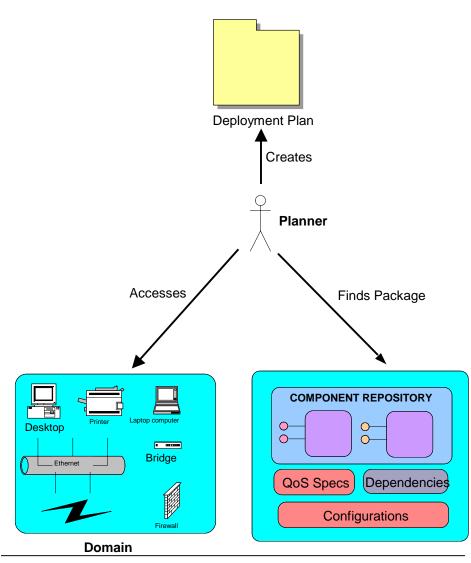

- Domain* provides functionality at the domain level
- Node* provides similar functionality, but restricted to a Node
- ApplicationManager
 - startLaunch() & destroyApplication() operations
- Application
 - finishLaunch() & start() operations

Deployment Actors



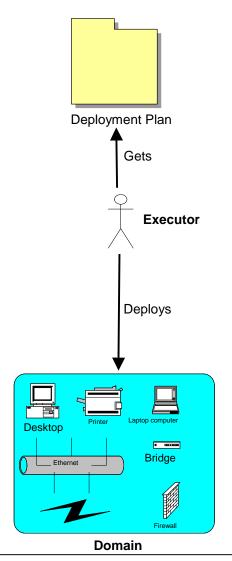
Deployment Actors: Repository Administrator

- Receives component package from software vendor
- Installs package into repository, using Repository Manager
 - Assigns "installation name"
 - Optionally applies custom configuration properties
 - i.e., sets default values for an application's external attributes (can be overridden during deployment)
 - Optionally sets "selection requirements"
 - Will be matched against implementation capabilities (during planning)
- Maintains repository contents
 - Browsing repository, updating packages, deleting packages ...



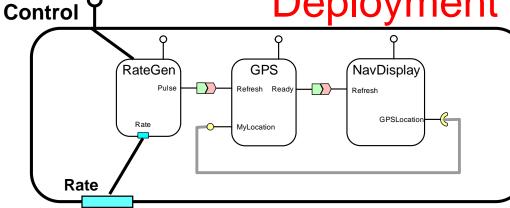
Deployment Actors: Planner

- Accesses application metadata from Repository Manager
 - Resolving referenced packages
- Accesses resource metadata from Domain through Target Manager
 - Live "on-line" data or simulated "off-line" data
- Matches requirements against resources
- Makes planning decisions
 - Selects appropriate component implementations
 - Places monolithic component instances onto nodes, assembly connections onto interconnects & bridges
- Produces Deployment Plan
 - "Off-line" plans can be stored for later reuse



Deployment Actors: Executor

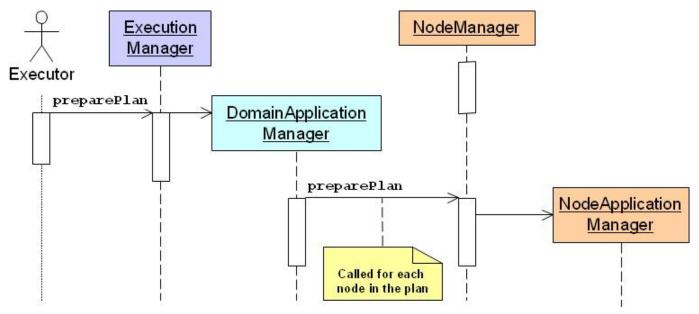
- Passes Deployment Plan to Execution Manager
- Separate "Preparation" & "Launch" phases
 - -Preparation readies software for execution
 - Usually involves loading implementation artifacts to nodes via Node Manager
 - May (implementation-specific) also involve pre-loading artifacts into memory, e.g., for faster launch
 - -Launch starts application
 - Instantiating & configuring components
 - Interconnecting components
 - Starting components



Deployment Example

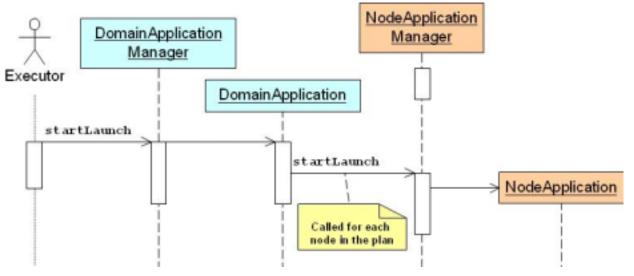
Display component

```
<Deployment:DeploymentPlan ...</pre>
  <label>Display Deployment Plan</label>
  <instance xmi:id="RateGen Instance">
    <name>RateGen_Instance
    <node>Alice</node>
  </instance>
  <instance xmi:id="GPS Instance">
    <name>GPS_Instance</name>
    <node>Alice</node>
  </instance>
  <instance xmi:id="NavDisplay_Instance">
    <name>NavDisplay_Instance
    <node>Bob</node>
  </instance>
```


</Deployment:DeploymentPlan>

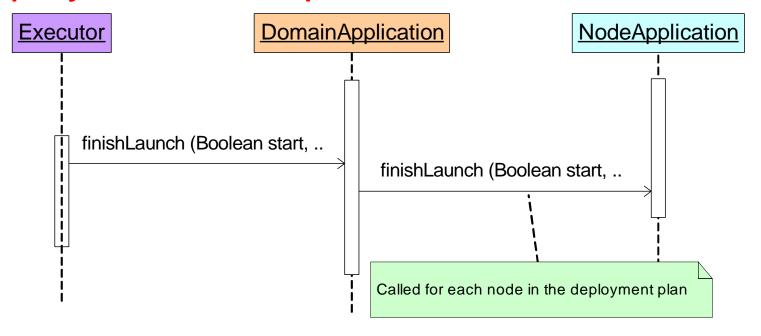
Mapping components to nodes

- The Display component is an assembly component
- When we deploy it, only the "monolithic" components will be actually deployed
- "Deployer actor" can specify which "monolithic" component(s) maps to which nodes, as specified by the ComponentDeploymentPlan (.cdp) descriptor
- We deploy three components to two nodes

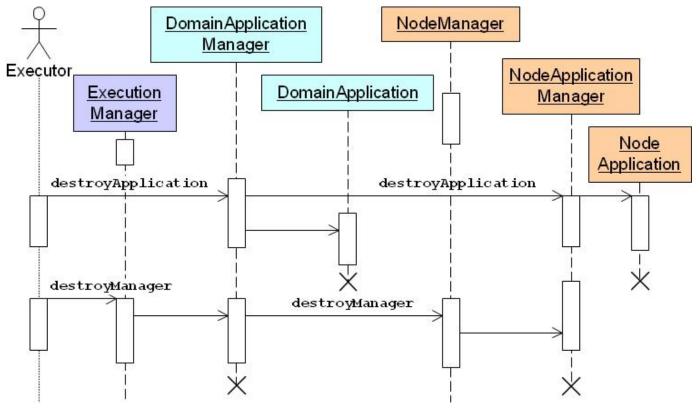

Deployment Example: Prepare Plan

- Before calling preparePlan(), ExecutionManager should be running & two NodeManagers should be running on Alice & Bob nodes
- Retrieve Component Packages from the Component Repository
- RepositoryManager parses XML metadata into an in-memory representation
- RepositoryManager creates global deployment plan & passes it to ExecutionManager to preparePlan(), which delegates to DomainApplicationManager
- DomainApplicationManager splits it into multiple local plans
- Contacts the two *NodeManagers* residing in Alice & Bob nodes to create appropriate NodeApplicationManagers & dispatch individual local plans

Deployment Example: Start Launch


- Executor initiates launching of the application
- DomainApplicationManager creates a DomainApplication object
 - Facilitates application launch by contacting individual NodeApplicationManagers
- NodeApplicationManagers residing in Alice & Bob nodes will create a NodeApplication individually

Deployment Example: Finish Launch & Start


- Executor notifies DomainApplication of completion of application launch
- DomainApplication notifies NodeApplications running on Alice & Bob nodes to complete application launch
- Connections between components are made at this stage
- Optional "start" parameter could be given to indicate whether actually "start" the application (i.e., SetSessionContext(), etc)

Deployment Example: Application Teardown

- Executor initiates tear-down by first terminating running applications under its control
 - DomainApplicationManager ensures tear down of NodeApplications running on both Alice & Bob nodes
- It then tears down both managers in Alice & Bob nodes

Wrapping Up

Tutorial Summary

CCM spec

- Extends the CORBA object model to support application development via composition
- CORBA Implementation Framework (CIF) defines ways to automate the implementation of many component features
- Defines standard run-time environment with Containers & Component Servers
- Specifies deployment & configuration framework
- Deployment & Configuration specification separates key configuration concerns
 - Server configuration
 - Object/service configuration
 - Application configuration
 - Object/service deployment

Additional Information on CORBA & CCM

OMG specifications pertaining to CCM

- CORBA Component Model (CCM)
 - •ptc/02-08-03
- Lightweight CCM
 - ptc/04-02-03
- QoS for CCM RFP
 - mars/03-06-12
- Streams for CCM RFP
 - •mars/03-06-11
- UML Profile for CCM
 - mars/03-05-09
- Deployment & Configuration (D&C)
 - •ptc/05-01-07

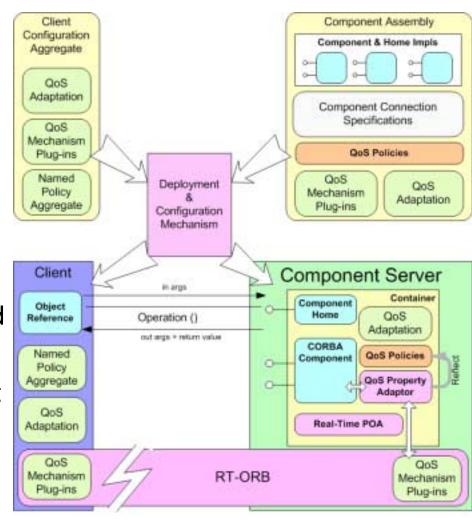
Books pertaining to CCM

CORBA 3 Fundamentals & Programming,
 Dr. John Siegel, published at John Wiley & Sons

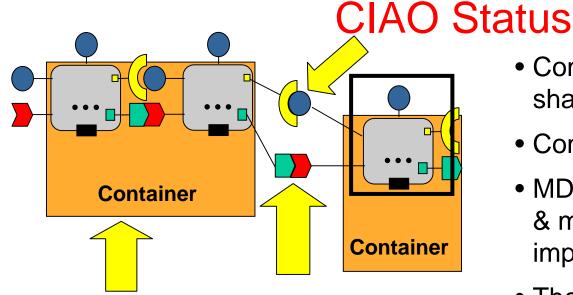
Web resources pertaining to CCM

- "The CCM Page" by Diego Sevilla Ruiz
 - www.ditec.um.es/~dsevilla/ccm/
- OMG CCM specification
 - www.omg.org/technology/ documents/formal/components.htm
- CUJ columns by Schmidt & Vinoski
 - www.cs.wustl.edu/~schmidt/reportdoc.html

Complete Lightweight CCM tutorial: www.cs.wustl.edu/~schmidt/OMG-CCM-Tutorial.ppt


Overview of CIAO & Future R&D Directions

Overview of CIAO


- Component Integrated ACE ORB
 - –Lightweight CCM implementation atop TAO
 - Supports component-oriented paradigm for DRE applications
 - Provides Real-time CORBA policies & mechanisms required for DRE applications
 - Key DRE aspects are supported as first-class metadata
- First official release (CIAO 0.4) was at end of December 2003
- Latest release is downloadable from deuce.doc.wustl.edu/Download.html

- Support for IDL 3 (component, home & related keywords) & most CIDL features have been added
- Support for all types of ports: facets
 (provides), receptacles (uses, uses
 multiple), event sources (emits,
 publishes) & event sinks (consumes)
- Support for the Session container via CIDL compiler

- Components can be built as shared libs or static libs
- Component server supported
- MDD tools to install, host, load,
 & manage component
 implementations are available
- The CIAO Deployment and Configuration Engine (DAnCE) provides support for component assemblies in compliance with ptc/02-08-03
- CIAO also supports Real-time CCM extensions
 - www.cs.wustl.edu/~schmidt/CIAO.html

CIAO Next Steps

- Deployment & Configuration (Leads: Gan Deng & Will Otte)
 - Implementing the new deployment & configuration specification, <u>ptc/03-07-02</u>, necessary for DARPA ARMS program
 - Changes to the deployment & assembly toolset to support lightweight components, as prescribed by ptc/04-02-03
- Core CCM Infrastructure (Leads: Johnny Willemsen & Nanbor Wang)
 - Additional support for Real-time CORBA Policies at the ORB level & object level
 - i.e., at the object reference level of a component receptacle
 - Integration of different event propagation mechanisms (such as Event & Notification Services) within the container
 - Compliant with Lightweight CCM specification
- Modeling tool support for CIAO (Leads: Kitty Balasubramanian & Jeff Parsons)
 - See <u>www.dre.vanderbilt.edu/cosmic</u> for details

How to Learn about CCM & CIAO Programming

- Examples available with the distribution
 - CIAO/docs/tutorial/Hello, a simple example that illustrates the use of some basic CCM concepts
 - CIAO/examples/OEP/BasicSP
 - A simple example that shows the interaction between 4 components
 - CIAO/examples/OEP/Display
 - Similar to the BasicSP, but has an additional feature showing integration with Qt toolkit
- Step-by-step to create & deploy components based on CIAO available at
 - CIAO/examples/Hello
- "Quick CORBA 3", Jon Siegel, John Wiley & Sons provides a quick start
- C/C++ User Journal articles with Steve Vinoski
 - www.cs.wustl.edu/~schmidt/report-doc.html

