

# Management of Applications in Large and Heterogeneous Systems

Dario Di Crescenzo
Fabrizio Morciano
SELEX Sistemi Integrati









## Agenda





- AMSM: state of problem
- AMSM: spec overview
- SELEX Sistemi Integrati experience
- Cardamom vs AMSM



# **AMSM:** state of problem





AMSM: state of problem



#### **Problem Statement**





- Naval Combat Management Systems
- Built upon huge variety of underlying computing platforms
  - hardware and software
- Need for consistency amongst Application
   Management platforms
  - enable integrators to abstract from platform dependencies
- Specific naval CMS QoS constraints



## **Design Rationale**





The design of the specification follows the following principles:

- Maximum use possible of existing standard DMTF CIM (it is a widely accepted standard for management of software and hardware systems)
  - The specification selects a relevant subset of CIM for the CMS domain and extends it where needed.
- Inclusion of HPI-based hardware monitoring as optional PSM.
  - CIM does not model hardware elements to the detail level required by AMSM RFP.
  - A set of PSMs covering a variety of platform technologies:
    - CORBA, DDS/DCPS, XML, DMTF CIM Managed Object Format (MOF), HPI.
    - A hierarchical 3-level model of software systems, applications and software executable elements.
    - A division between design-time and run-time information of software and hardware entities.
    - A flexible deployment model allowing user defined conditions and actions to be defined.



## **AMSM History**





- RFP issued: June 25<sup>th</sup>, 2004
- Initial submission deadline: May 30<sup>th</sup>, 2005, responses from:
  - Thales, SELEX, Themis, Progeny and Atlas
- Revised submission drafts: February 2006, April 2006,
   May 2006, June 2006, September 2006, December 2006
   prepared by:
  - Thales, SELEX, Themis and Progeny
- Draft Adopted Specification: April 2007



# AMSM: spec overview





AMSM: spec overview



### **Submission overview**





- Form of the submission:
  - Platform Independent Model (PIM)
    - in UML for data models and service interfaces
  - 5 Platform Specific Models (PSM):
    - CORBA/IDL
    - DMTF/CIM (=> DMTF/WBEM)
    - DDS/DCPS
    - XML (initialisation files)
    - HPI (cross-reference with HPI initialisation files)



# **Conformance Profiles**





|                                        |                                |          |                         |                           |                           | **                 |  |
|----------------------------------------|--------------------------------|----------|-------------------------|---------------------------|---------------------------|--------------------|--|
| Profile vs. Packages rule <sup>s</sup> |                                | Profiles |                         |                           |                           |                    |  |
|                                        |                                | Normal   | HW System<br>Management | Fault<br>Tolerance        | Load<br>Balancing         | Maximum<br>Control |  |
| P<br>A<br>C<br>K<br>A<br>G<br>E<br>S   | LW Logging                     | F        | F                       | F                         | F                         | F                  |  |
|                                        | AMSM Management                | Р        | Р                       | + opt. classes and Assoc. | + opt. classes and Assoc. | F                  |  |
|                                        | Supported Application<br>Model | F        | F                       | F                         | F                         | F                  |  |
|                                        | Application                    | P        | P                       | + opt. classes and Assoc. | + opt. classes and Assoc. | + opt.<br>methods  |  |
|                                        | Application Spec               | P        | P                       | + opt.<br>Classes         | + opt.<br>Classes         |                    |  |
|                                        | Application<br>Deployment      | F        | F                       | F                         | F                         | F                  |  |
|                                        | Application Deployment Spec.   | F        | F                       | F                         | F                         | F                  |  |
|                                        | Logical Hardware               |          | F                       |                           |                           |                    |  |
|                                        | Logical Hardware<br>Spec.      |          | F                       |                           |                           |                    |  |

A - At least one among them

P - Partial

F - Full



## **Conformance Profiles**





| Profiles vs. Implementation rules |      | Profiles |                      |                 |                |                 |
|-----------------------------------|------|----------|----------------------|-----------------|----------------|-----------------|
|                                   |      | Normal   | HW System Management | Fault Tolerance | Load Balancing | Maximum Control |
| Implementation                    | Must | Х        |                      |                 |                |                 |
| ntation                           | May  |          | Х                    | X               | X              | Х               |

| Implementation vs. PSMs rules |              |            | Implementation |     |  |
|-------------------------------|--------------|------------|----------------|-----|--|
|                               |              |            | Must           | May |  |
|                               |              | XML        | X              |     |  |
|                               | Core<br>PSMs | IDL        |                |     |  |
| PSMs                          |              | CIM        | A              |     |  |
| Ms                            |              | DCPS/f     |                |     |  |
|                               |              | DCPS/<br>m |                | X   |  |
|                               |              | HPI        |                | X   |  |

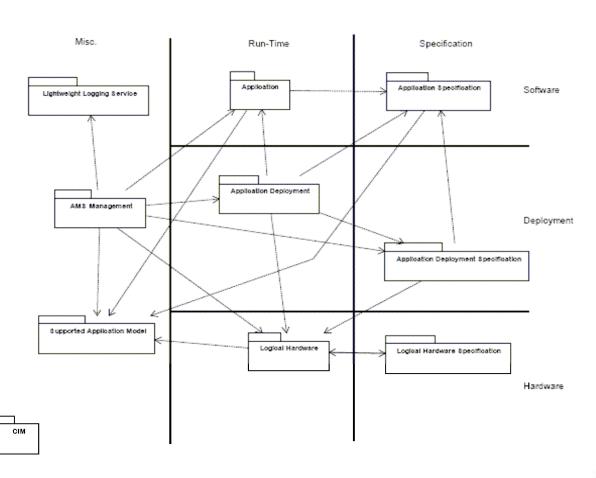


## **PIM Packages Structure**





- In order to break down the overall model in a modular way such that interdependencies and complexity are minimized, two dimensions were considered:
  - Hardware vs. Software vs. Deployment (i.e., Software on Hardware)
  - Run-Time (monitoring) classes vs. Specification Classes


| Package       | Hardware                          | Software                     | Deployment                           |
|---------------|-----------------------------------|------------------------------|--------------------------------------|
| Run-Time      | Logical Hardware                  | Application                  | Application Deployment               |
| Specification | Logical Hardware<br>Specification | Application<br>Specification | Application Deployment Specification |



# Packages overview



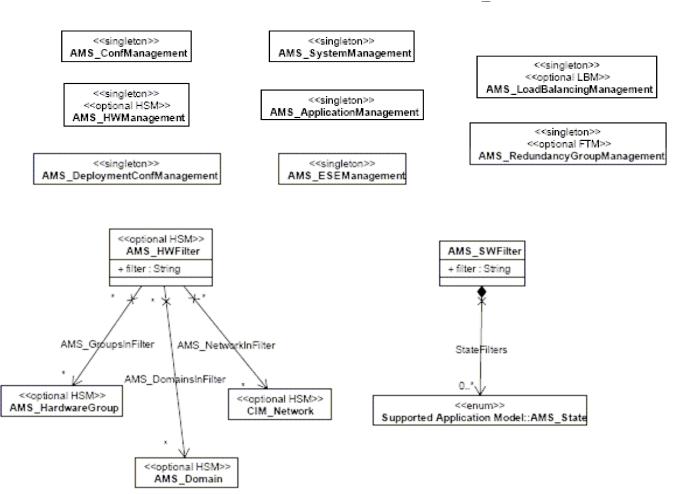













- 8 classes that provide the entry points of the AMSM service with the operations that give access to the remainder of the model
  - AMS\_HWManagement and AMS\_PhysicalHWManagement for hardware
  - AMS\_DeploymentConfManagement for the deployment configurations
  - AMS\_SystemManagement for systems
  - AMS\_ApplicationManagement for applications
  - AMS\_ESEManagement for executable software Elements
  - AMS\_LoadBalancingManagement for load balancing groups
  - AMS\_RedundancyGroupManagement for redundancy groups



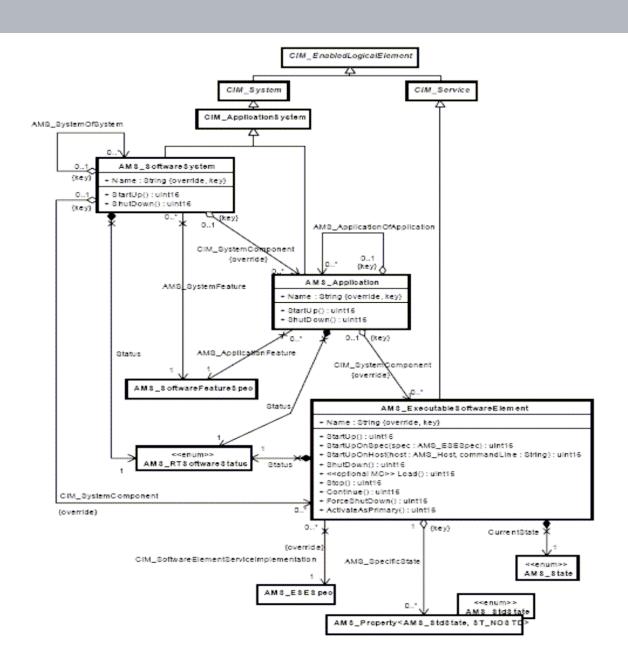
# AMS Management Package










## **AMS Application Package**



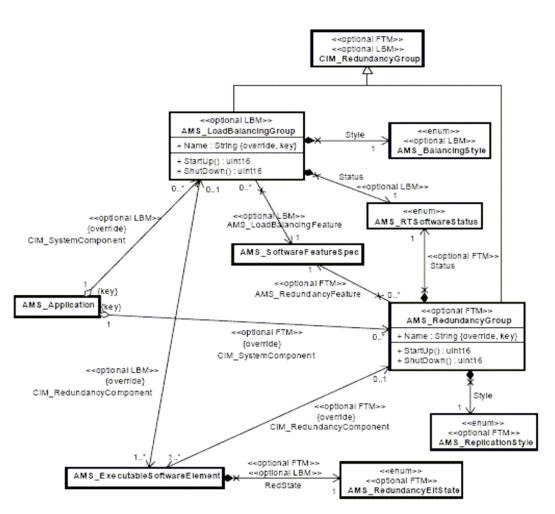


- The "Application" package groups the classes needed to manage and monitor applications while they are running (information for the application definition are in "Application Specification" package).
- Since some items needed to manage applications are defined beforehand, there are links from this package to the "Application Specification" package.
- Roughly AMS\_Application is designed as a set of executable software elements and/or redundancy groups and/or load balanced groups.
  - A redundancy group (AMS\_RedundancyGroup) gathers executable software elements which are executed in a redundant way.
  - A load balancing group (AMS\_LoadBalancingGroup) gathers executable software elements, which are executed in a load, balanced way







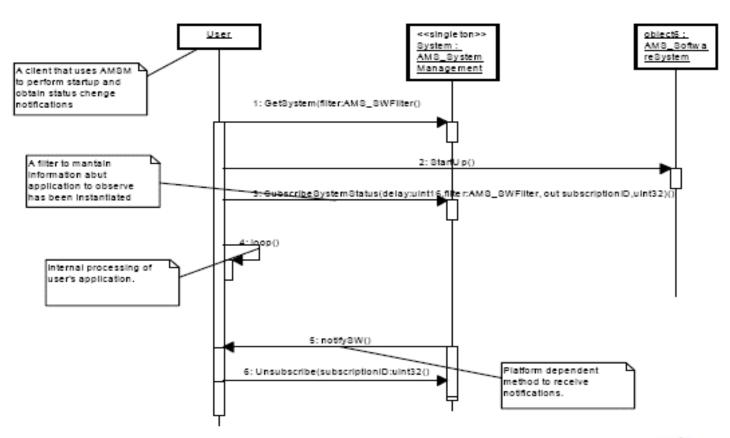

tems THEMES THALES



# **AMS Application – LB and FT**










# Starting up an application



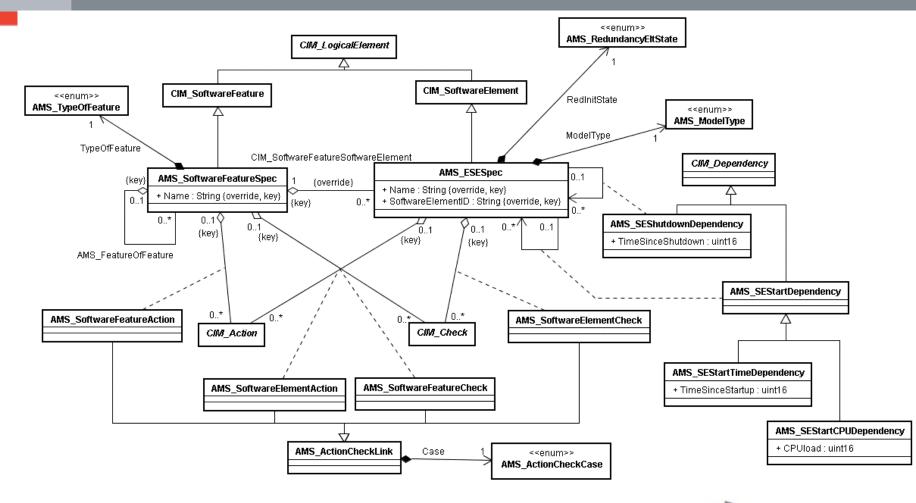










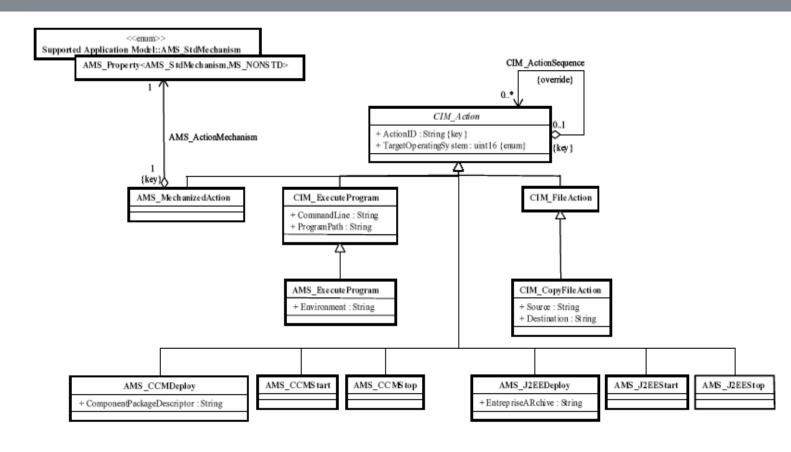

Sistemi Integrati



- The "Application Specification" package groups the classes needed to model applications so they can be deployed subsequently.
  - This package is a configuration view of applications.
  - The main entity is the specification of an executable software element: an AMS\_ESESpec
  - An executable software element specification is the object which the AMSM service needs to deploy applications (i.e., create an executable software element from its specification)
    - An actual executable software element will not hold a lot of information in itself since it will use its specification to keep them.
       Of this application information, the most important are the checks (CIM\_Check) and actions (CIM\_Action).



# **AMS Application Specification Package**





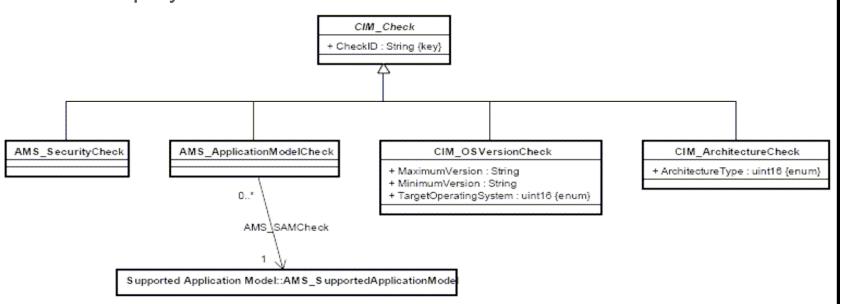





Sistemi Integrati



CIM\_Action are operations that are part of a process to start or shutdown (or deploy) a software element


## **Check Specification Classes**



Sistemi Integrati



CIM\_Check are conditions or characteristics that have to be true so as to deploy a Software Element



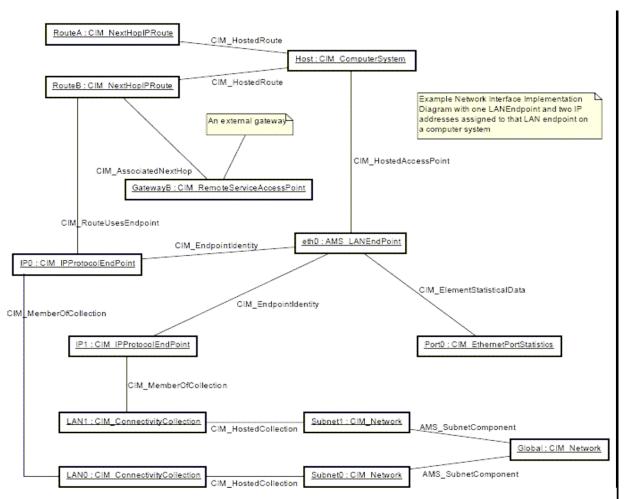
An association class between AMS\_ESESpec and either CIM\_Action or CIM\_Check specifies the condition (start, stop, deploy) in which the action or check will take place.

# AMS Logical Hardware Package





It represents the "Hardware" sub-package describing the effective hardware topology.


- These classes permit the representation of an actual network.
- The essential class is AMS\_ComputerSystem which represents:
  - A computer as an aggregation of hardware elements.
  - A computer as a node in a network.
- An AMS\_ComputerSystem aggregates a hardware configuration (CIM\_LogicalDevice)
  - processor, memory, file systems, and gets some operating systems (AMS\_OperatingSystem) which support application models











All the AMS\_ComputerSystem class and sub-classes are interfaces offering monitoring methods.



## CORBA/IDL PSM





- There are different ways in which this PSM may be utilized is:
  - Browsing software system structures: application, groups, and ESEs.
  - Browsing networks and computer systems.
  - Discovery and configuration of networks and computers.
  - Software data inventory.
  - Display of computers and/or applications statuses.
  - GUI-based management of applications and computers.

These uses may be gathered in two main purposes:

- Getting information from a database of software and hardware
  - Need of interfaces to get all the attributes and to iterate on all the associations
- Managing some of these element: applications, ESEs, computers
  - Need for a way to quickly retrieve elements of the object



#### DDS/DCPS PSM





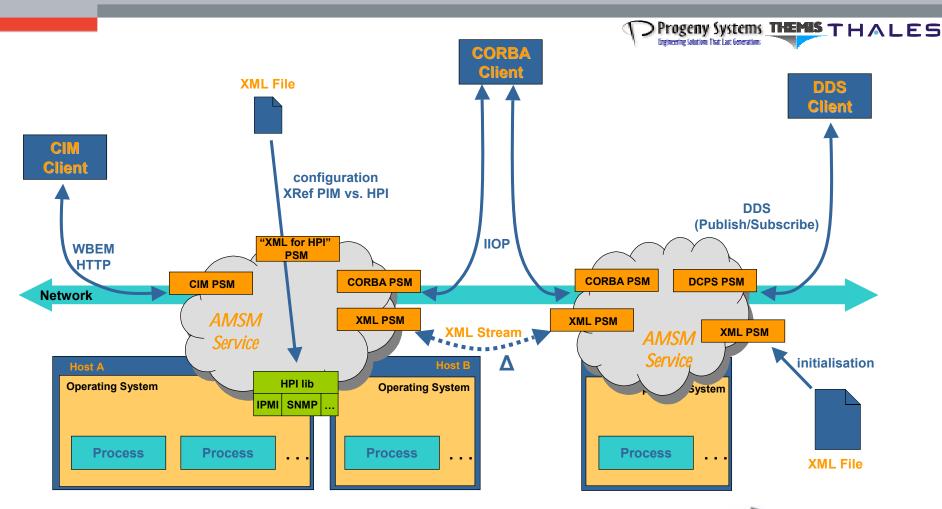
#### The PSM is divided into two parts:

- The DCPS/f ('/f' stands for full) PSM is intended to be equivalent to the CORBA/IDL and CIM profile, and thus compliant implementations are not required to deploy any elements of the CORBA and/or CIM profiles
- The DCPS/m ('/m' stands for monitoring) PSM is a subset of the DCPS/f PSM, and contains those elements which are required for asynchronous monitoring of states of the different (software and hardware) elements.
  - The DCPS/m PSM is defined to allow other PSMs (CORBA and/or CIM) to import it and use it for asynchronous monitoring tasks.
  - The inclusion of DCPS/m profile in CORBA and/or CIM PSM is not a mandatory, but an optional (convenience) mechanism.
- Typically, the integration will be implemented through the various "subscribe" methods in the CORBA and CIM PSM, which, in case when DCPS/m PSM is included, will result in subscription (registration of interest) to the relevant DCPS topics from the DCPS/m profile.



#### XML PSM






- Normalize the format of the files which can be read or written by an AMSM service
- The uses of these files by an AMSM service are threefold:
  - May be the configuration files allowing the user of the AMSM service (integrator...) to initialize the service with
    - Software system specifications
    - Application specifications
    - Deployment specifications,
    - A (first) drawing of the network.
  - May be used as a backup capability allowing an AMSM service to be re-started with its previously recorded state.
  - May be used to exchange data amongst multiple instantiations of the AMSM service.



# The whole picture





### What's next





- Now undergoing finalisation
- Possible scope for future revisions of the standard
  - dynamic deployment and creation of software specification
  - **dynamic** hardware discovery
  - dynamic creation of software specification
  - multiple cooperating or competing AMSM services
    - API to exchange data among AMSM services
  - "low-weight" profile
    - hardware definition cuts to the minimum
    - no "check" classes ...
  - new "Action" type: On Error
  - new specific "Action" classes in order to deploy and run component packages (CCM D&C, J2EE)
  - new classes of devices



#### So what is it?





- A complete solution for application management and system monitoring of near real-time (naval) CMS and C4I systems
- Object model based on worldwide know-how on naval CMS
  - about 60 specific classes
  - 50 classes extracted from DMTF/CIM standard
- Several kinds of implementation foreseen
  - CIM/HPI: interoperability with today's management tools
  - CORBA and DDS: integration in today's systems
  - XML: initialisation and exchange streams









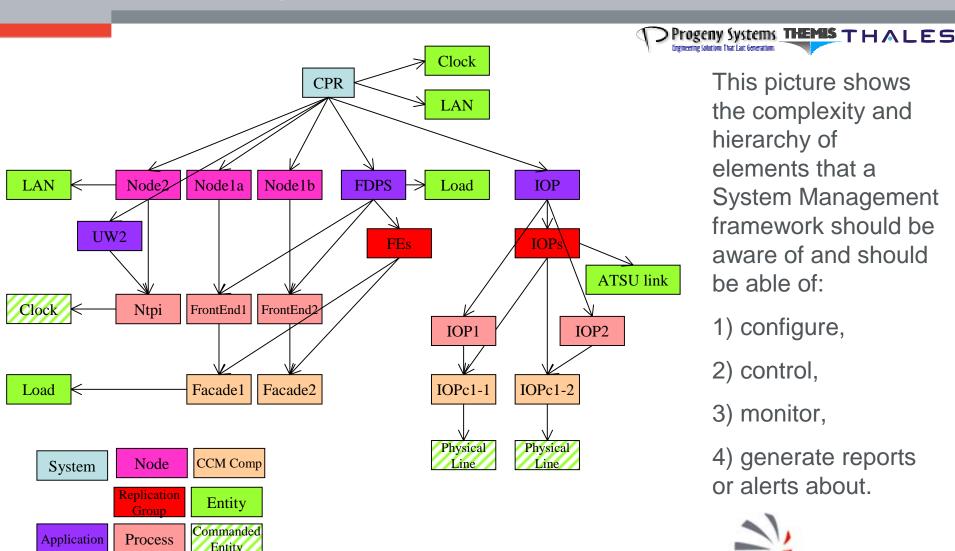
Selex Sistemi Integrati experience



# Overview of Required Capabilities for System Management Framework



Sistemi Integrati




#### **Expected System Management capabilities:**

- System Configuration
  - initial definition of the system configuration
  - runtime modification of system configuration (where applicable)
- System Control
  - start-up and stop of the whole system or of a system subset
  - shutdown and reboot of nodes
- System Monitoring
  - Monitoring of processes
  - Monitoring of nodes
- System State report and Notification
  - get the system state upon request (Administration HMI)
  - be automatically notified when a specific event happens (Observer)







This picture shows the complexity and hierarchy of elements that a System Management framework should be aware of and should be able of:

- 1) configure,
- 2) control,
- 3) monitor,
- 4) generate reports or alerts about.



#### The Cardamom Solution



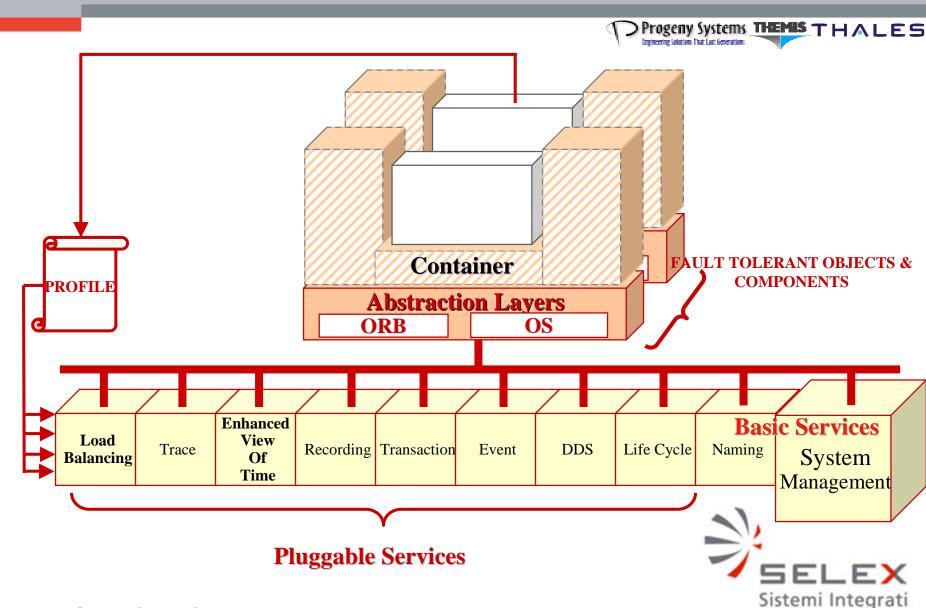


- Cardamom a open source, CORBA based middleware to deploy near real-time application
- Jointly developed by SELEX and Thales
- Addresses the problem to perform AMSM via CORBA



## **Cardamom vs AMSM**

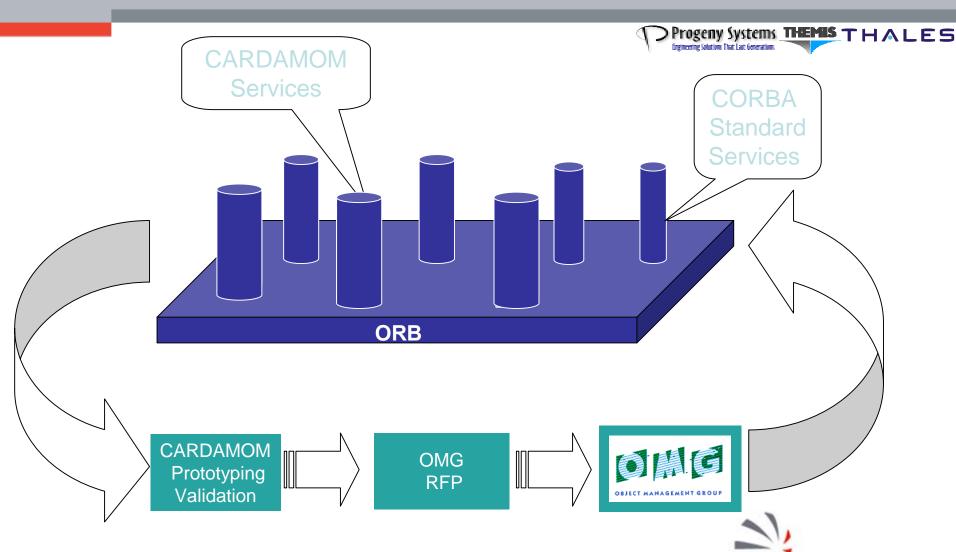





#### Cardamom vs AMSM



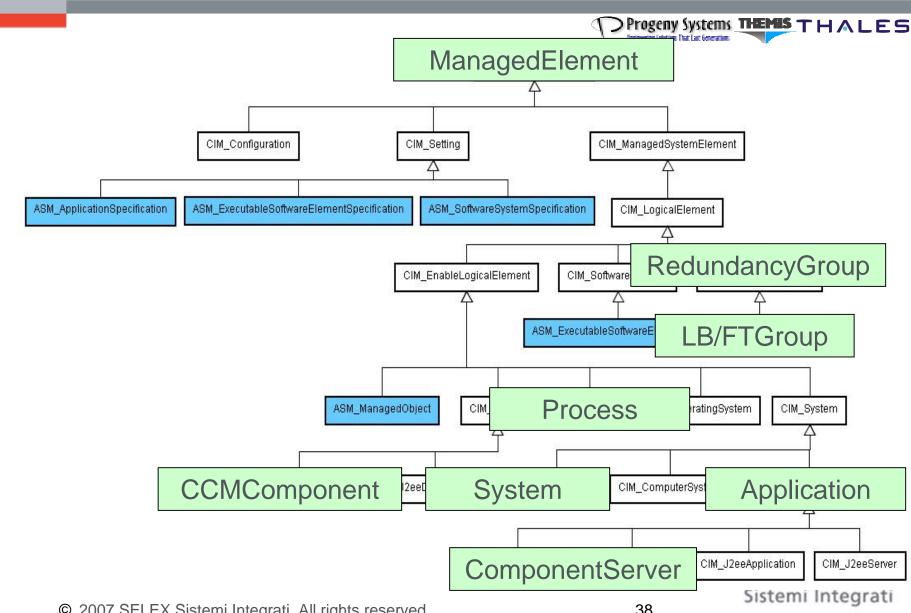
## The Big Picture






## Cardamom Approach in OMG




Sistemi Integrati



#### What in Cardamom

# What in AMSM





### **AMSM and Cardamom**





- PRO
  - Uses a CORBA-like profile
  - Addresses the AMSM capabilities over Large Systems
  - Provides functionalities to use CCMComponents
- CONS
  - Hardware management





Thanks for your attention







