
THALES

Experience Report on Implementing and Applying a Standard Real-Time Embedded Component Platform

Gregory Haik – gregory.haik [at] fr.thalesgroup.com V. Watine, V. Seignole, O. Hachet, J.-L. Gilbert, H. Balp THALES Land & Joint Systems, France

- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

JMG RTE Systems Workshop

Washington, July 2007

Who Are We? (

Zoom out: Thales Group

- Electronics and optronics equipment vendor, and system integrator
- Addresses defense and security markets
 - Military telco, Aerospace, Naval, ATM & Air Defense, Homeland Security, e-gov't
- Sales: 12 billion €
- 70 000 employees in +50 countries, mostly France & UK

Zoom in: SC2 Lab

- Part of Land & Joint Division (radio-communications, optronics, C4I)
- In charge of Research & Technology activities on middleware
 - R&T on component frameworks for RTE systems
 - R&T on interoperability and integration of complex systems (SoS)
- Promotes R&T results in company's programs
- 25 people

- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

Software Engineering of RTE Systems (

Development of *Real Time Embedded (RTE) systems* suffers from the same productivity problems than large-scale information systems, such as:

- Platform heterogeneity
- Difficult testability
- Complex internal communication and interaction schemes
- Difficult configurability...

... plus many others!

- Timing issues
- Certification/assurance issues: safety-critical, mission-critical, securitycritical
- Memory footprint
- Domain heterogeneity: telecommunications, avionics, vetronics, robotics

Software Engineering solutions for information systems must be *adapted* and extended to address RTE systems development

Systems Workshop

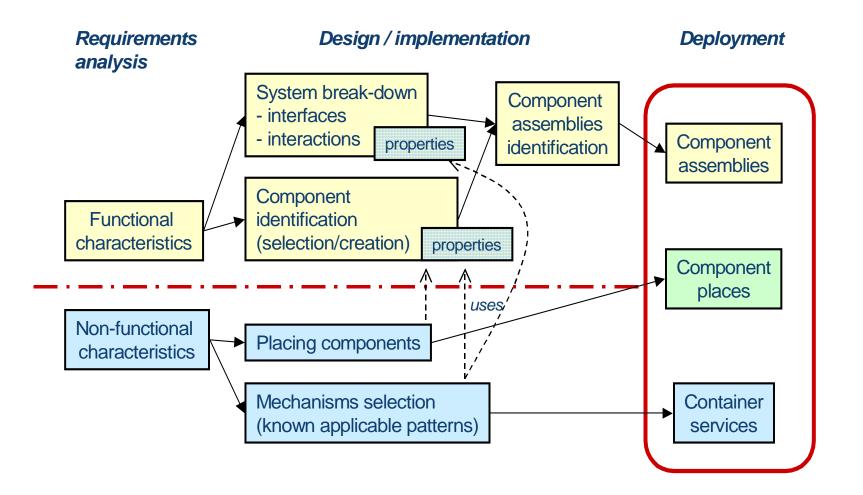
- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

JMG RTE Systems Workshop

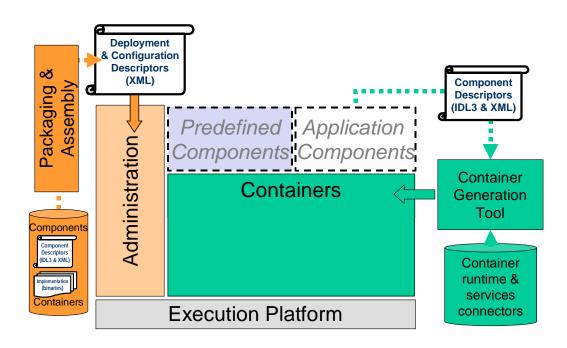
Washington, July 2007

Adaptation of Component-based Development

Addressed by Is MPARE Projects

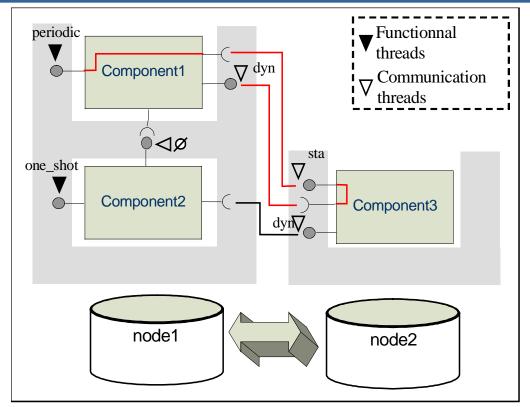


- EJB, CCM target Information Systems and address:
 - Code reuse; Interoperability; Automatic deployment and configuration
- Non-functional needs of Information systems are
 - Communication support
 - Security
 - Persistency
 - Transactions
- RTE systems : no such list be a priori devised
 - OMG Lightweight CCM specification defines empty component enveloppes – no security, no persistency...
 - Up to the framework provider to tailor enveloppes to a particular domain
 - Still, it requires a fine requirement analysis of domain product line application


This document is the property of Thales Group and may not be copied or communicated without written consent of Thales

Architecture of MyCCM Component Framework (

Tailoring enveloppes while minimizing memory footprint calls for a *modular architecture of the component framework* itself.

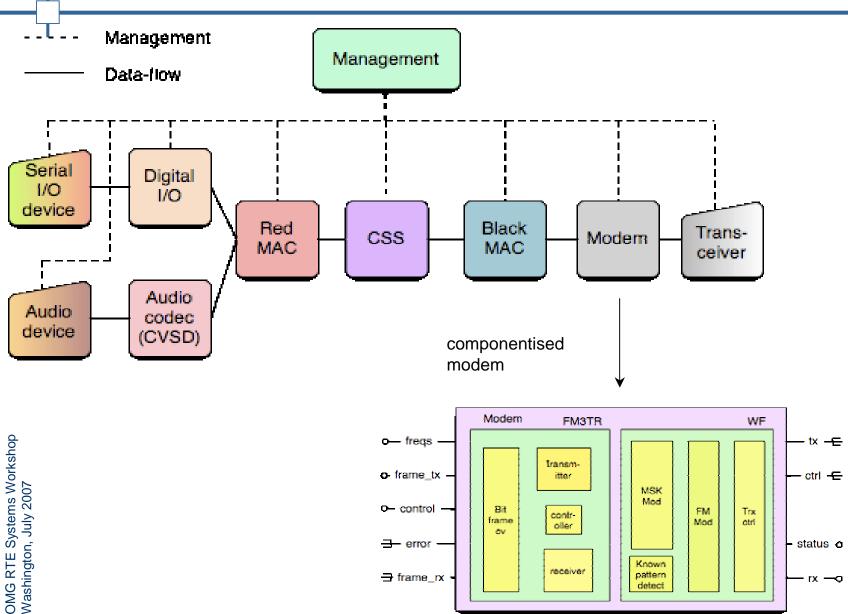

The extra benefits of this approach (beyond those of CBD) are:

- The ability to plug-in only what is strictly necessary
- The ability to adapt to various domains or product lines or even applications

MyCCM Approach to Real Time (+)

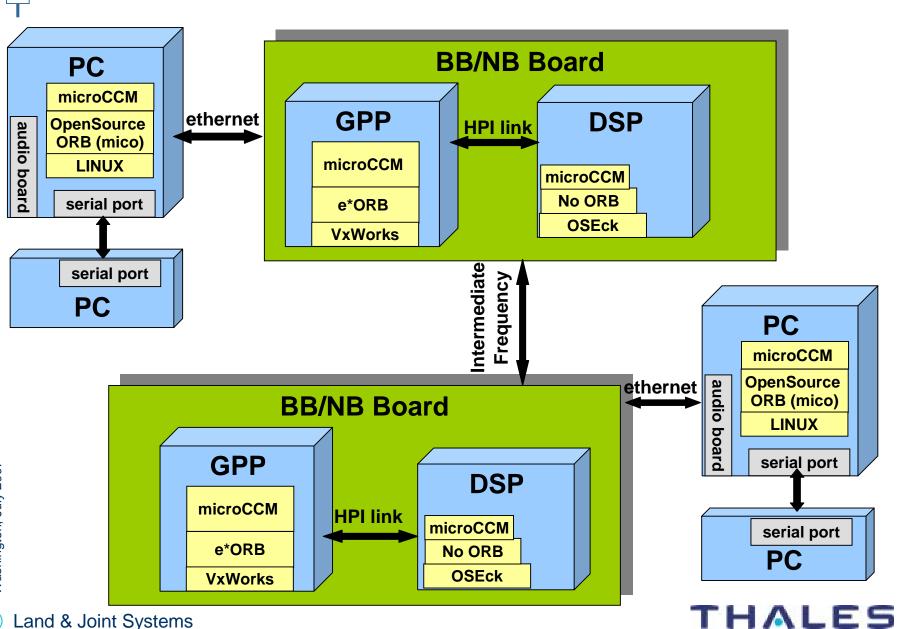
MyCCM enables the configuration of real-time scheduling parameters to:

- Define an activation model based on "periodic" and "one shot" "functional threads"
- Set the scheduling parameters of "communication threads" handling the component interaction mechanisms

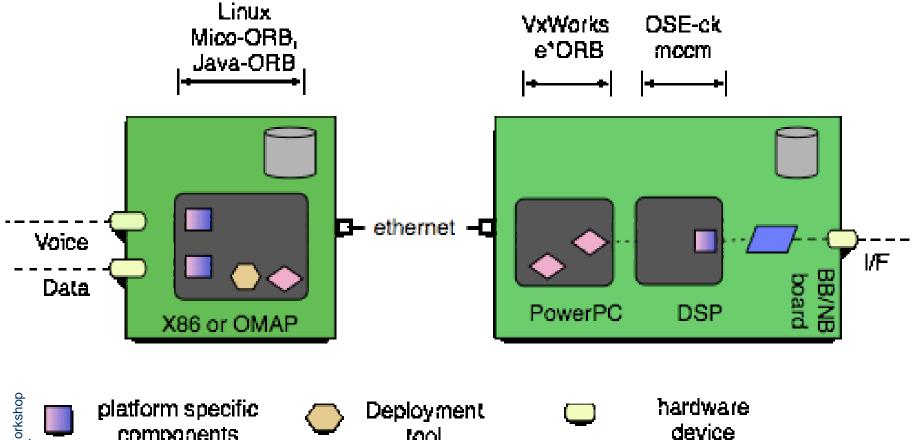


- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

Breakdown of FM3TR Waveform (+)



THALES


SdR Use case HW/SW Platform (+)

rhis document is the property of Thales Group and may not be copied or communicated without written consent of Thales

SdR Use Case Deployment (+)

components persistent storage

(filesystem)

tool

Transceiver capability

- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

JMG RTE Systems Workshop

Washington, July 2007

Benefits for Software Architect

MyCCM improves RTE software development productivity

- Intensive code generation
 - Abstraction and generation of internal communication protocols
 - Generation of deployment code
 - Generation of threading artefacts
- Integration with modelling tools
 - Improving communication between team members
 - Facilitating verification (yet a promise)
- Ease of testing
 - Functional validation on host platform
- Late binding to the target platform
 - Reduced integration risk

15

- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

Systems Workshop

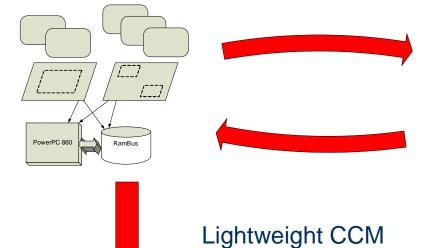
Verification and Validation

To address *hard real-time critical* systems development, the framework must come with means to check that the deployed architecture will meet its <u>timing requirements</u>.

As a first step towards component-based architecture verification and validation, *schedulability analysis* should be performed:

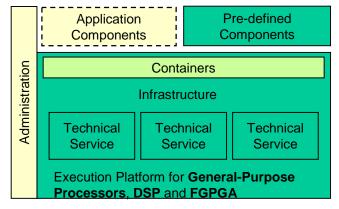
- This requires the framework user to provide a characterisation of the temporal properties of each component.
- Combining this information with the activation model and corresponding communication threads, end-to-end execution times can finally be estimated.
- Transcribing this information in a tool like MAST, temporal analysis may be performed.

Many other requirements may be verified...



OMG RTE Systems Workshop Washington, July 2007

ITEA - SPICES Project Big Picture



descriptors

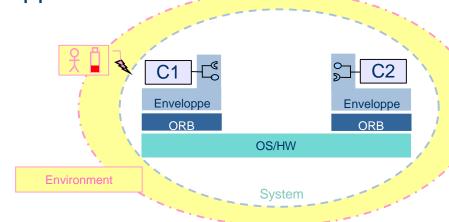
Application
Components
Packages

Verification Techniques

- Schedulability, energy, memory analysis
 - MAST, Cheddar...
- Model Checking
 - BIP, TINA, CPNTool
- Simulation
 - SystemC, MyCCM, Ades
- Middleware code generation and verification
 - PolyORB-HI, Occarina

Running System

Land & Joint Systems


- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

Flexibility: Dynamic Reconfiguration (+)

- Increased adaptability of RTE applications
 - Bug correction,
 - Power limitations,
 - User requests
 - Fault tolerance ...

- Means evolvability of the system architecture
 - Functionality removal
 - Component migrations, deletion, replacement.
- Direction
 - Generative reconfiguration language
 - Analysis of reconfiguration policies for validation purposes
- Addressed by Paris Region-funded project *Usine Logicielle*

- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

Ŷ

Flexibility: Dynamic Scheduling

- Beyond fixed priority scheduling, à la POSIX
- Typically valuable for processing sound/video
 - Use case is a UMTS protocol stack
- Applicability criteria
 - Hard real time, i.e. overrun is a fault... BUT
 - Not safety- nor mission- nor security-critical
 - What is critical is resource usage optimization
 - WCET >> Average Execution Time
 - Schedulability Analysis is too pessimistic
- Proposed Solution (Univ. Cantabria, Univ. York)
 - Dynamic allocation of resources to processing tasks
 - Components come with a range of implementations
 - Fast computation, low quality
 - Slow computation, high quality
- Addressed by EU-funded FRESCOR Project

Washington, July 2007

Systems Workshop

- Who Are We?
- Motivations
- Approach
- Use cases
 - FM3TR Software-defined Radio
- French & European Research Outlook
 - Validation & Verification
 - Dynamic Reconfiguration
 - Flexible Scheduling
- Standardisation Issues

T

Standardisation Issues

Lightweight CCM std has limitations

- No definition of insertion contracts for technical services
- Interaction models are restricted to
 - Facet and receptacles (RPC)
 - Push-Push events

Deployment and Configuration std needs adaptation for RTE

- Multi-domain, multi-application deployment should be optional
- Semi and fully static deployment should be considered
- Ongoing standardisation activities
 - QoS for CCM addresses insertion & config of technical services
 - DDS for CCM addresses extensions of interaction models
 - Nothing directly targeting D&C spec

Major conformance points

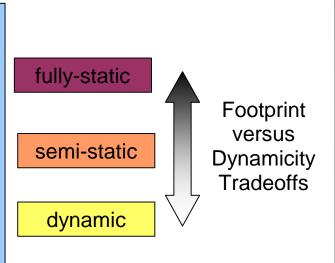
- Source-level conformance of components with CIF
 - Enables re-use of components in various deployment contexts
- Conformance of descriptors to XML schemas of D&C std
 - Provides stability to modelling tools
- Standards are a starting point for further adaptation

Systems Workshop

$\dot{\top}$

Concluding Remarks

- MyCCM is beyond the proof-of-concept
 - Foundations of SW development for FREMM's IRST
- Many research activities presently conducted
 - V&V, dynamic reconfiguration, flexible scheduling
 - But also: FPGA, ARINC 653, MILS...
- Standardisation activities should go on
- Relevance of LwCCM is maximum when leveraging architectural descriptions
 - RT/E systems with stringent time/memory/energy constraints
 - Careful mapping of SW architecture to HW platform
 - Fine-tuning deployment and configuration at integration time
 - Reasonably small amount of SW components
 - Performing early V&V on architectural models
 - Otherwise DDS might be more relevant
 - More straightforward, less architecture burden
 - Still good opportunities for code re-use


Systems Workshop

MyCCM Supported Platforms (+)

J&C profiles

languages Multiple

Availability ISO-C++ of the three IDL mappings

Local seamless cohabitation of languages

Multiple targets

X86, Linux, e*ORB C++ / e*ORB C X86, Linux, mico, TAO MPC860, VxWorks, OrbExpress GPP MPC860, VxWorks, e*ORB C++ generic, VxWorks, Orbless

C5510, OSE-ck, Orbless (C) C5510, OSE-ck, e*ORB C C5510, DSP/Bios , Orbless (C)

Micro ARM7, OSEK (auto RTOS), EC++ controllers ColdFire, OSE-epsilon (C)

Reusable services and connectors

Technical services

- messaging code generation
- real-time CORBA integration
- real-time trace
- performance measurement
- RT locking mechanisms

OMG RTE Systems Workshop Washington, July 2007

E-C++

Ansi C