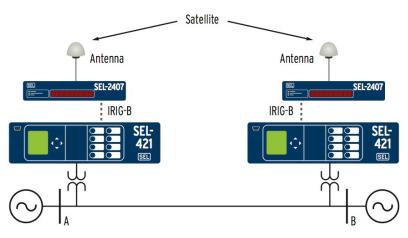
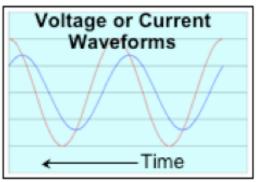

Secure Delivery of Time-Critical Data on NASPInet: Requirements and Challenges


Rakesh Bobba




PMUs and Synchrophasors

- Voltage & Current Magnitudes
- Frequency
- Every 2-4 seconds
- Data from Phasor Measurement Units (PMU's)
 - Voltage & current phase angles
 - Rate of change of frequency
 - Time synchronized using GPS and 30 120 times per second

SynchroPhasor Applications

RESEARCHERS

Automatic alarming of RAS

Out of step protection

Short/long-term stability control

FACTS feedback ctrl

PLANNERS

Post-mortem analysis

Model validation

 Phasor network performance monitoring & data quality

Email notifications

Test new real-time applications

RELIABILITY COORDINATORS

- Situational awareness dashboard
- Real time compliance monitoring
- Frequency Instability Detection/Islanding

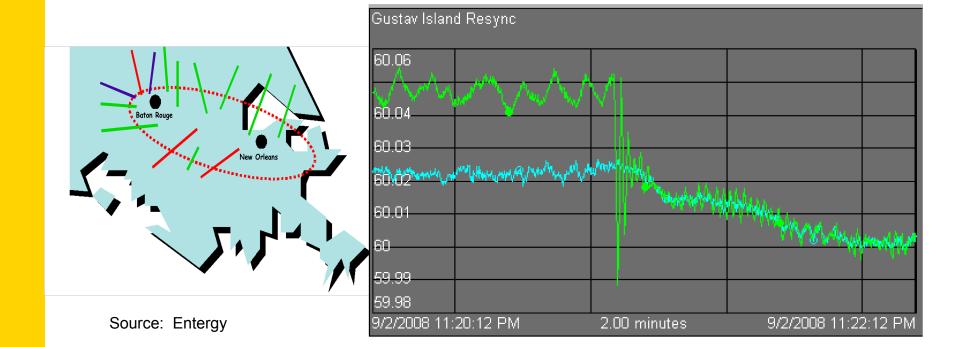
OPERATORS

- Real time performance monitoring
- Real time alerts and alarms
- Event detection, disturbance location
- Suggest preventive action
- Interconnection state estimation
- Dynamic ratings

• St

Phasor

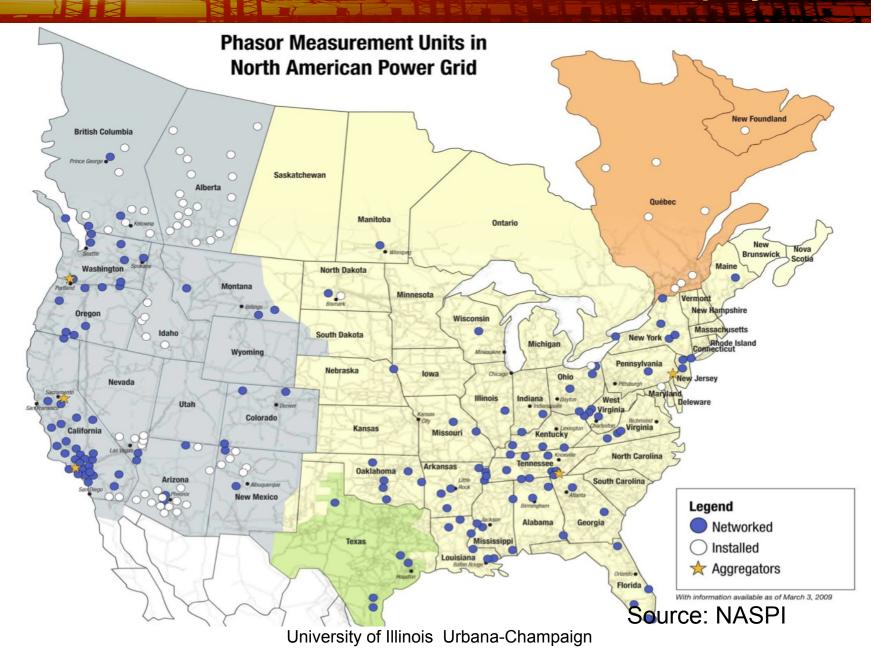
Applications


Credit: NASPI Operations Implementation Task Team (OITT)

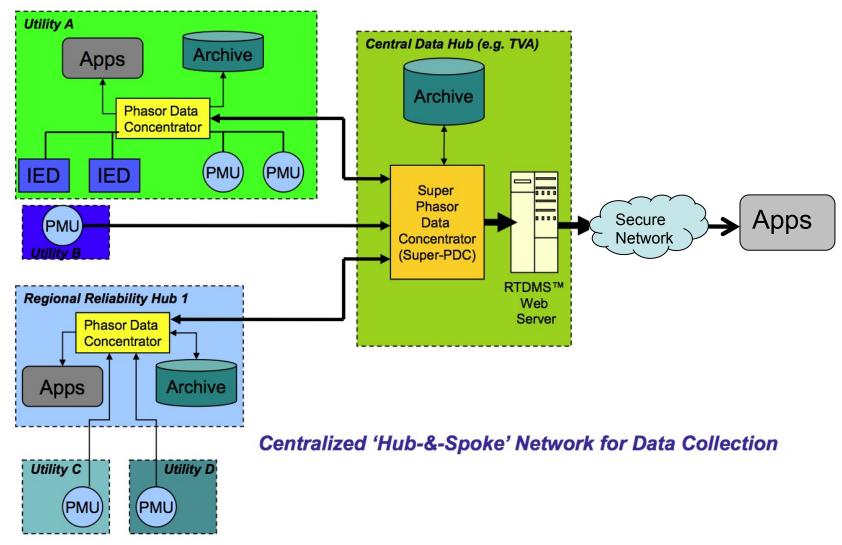
Real World Example

Entergy and Hurricane Gustav -- a separate electrical island formed on Sept 1, 2008, identified with phasor data

Island kept intact and resynchronized 33 hours later


PMU Applications and Deployment

PMU Applications	North America	Europe	China	India	Brazil	Russia
Post-disturbance analysis	J	J	V	Р	T	
Stability monitoring '	J	J	J	Р	Р	J
hermal overload monitoring	J	J	V	Р	Р	J
ower system restoration	J	J	J	Р	Р	Ρ̈́
Model validation	J	J	V	Р	T	V
tate estimation	P	Ρ̈́	Ρ̈́	Р	Р	P
eal-time control	T	T	T	Р	Р	P
daptive protection	P	Р	Р	Р	Р	P
Vide area stabilizer	T	T	T	Р	Р	Р

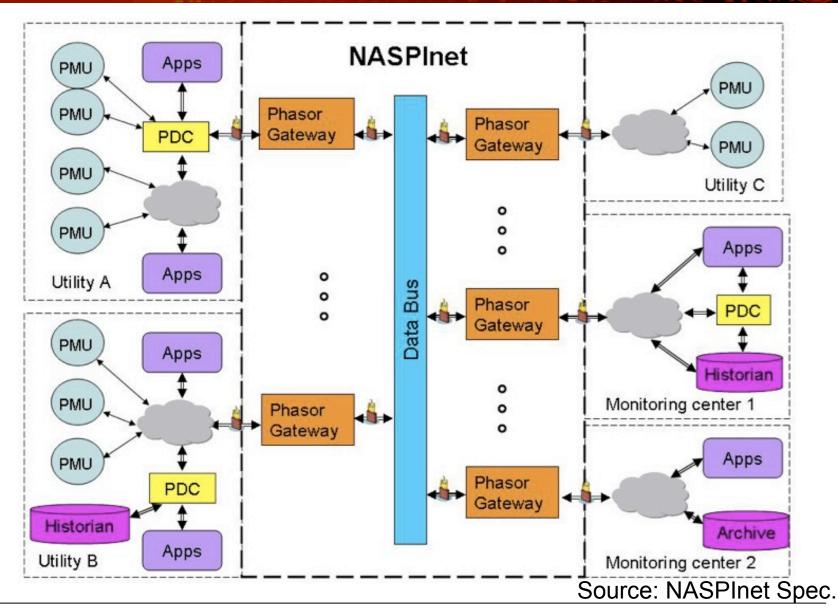

Source – Chakrabarti, Kyriakides, Bi, Cai and Terzija, "Measurements Get Together," IEEE Power & Energy, January-February 2009

Current PMU Deployment

Current Architecture for PMU Data Sharing

Source: NASPI

Towards a Distributed PMU Data Network


- Centralized Network
 - not scalable
- Need a de-centralized network
 - NASPInet "industrial grade", secure, standardized, distributed, and expandable data communications infrastructure to support synchrophasor applications
 - NASPI North American SynchroPhasor Initiative, a collaborative effort between U.S. DOE, NERC, electric utilities, vendors, consultants, federal and private researchers and academics
 - Mission: to improve power system reliability and visibility through wide area measurement and control
 - NASPI (D&NMTT) proposed a conceptual architecture
 - further refined in NASPInet specifications

- Ad-hoc approaches
 - do not scale
 - e.g., point-to-point links -> O(n²) for full connectivity
 - not efficient
 - e.g., same signal has to be sent over many links
 - do not interoperate
- Need to be ready for an explosion of PMU applications
 - e.g., iPhone and its apps caused 5000% increase in data traffic for AT&T Wireless

De-Centralized NASPInet: Conceptual Architecture

NASPInet Requirements and Challenges

- Large distributed network continental scale, peer-to-peer?
- Quality of Service (QoS) prioritization of traffic, latency management etc
- Security of PMU data integrity, availability and confidentiality, key and trust management, network admission control, intrusion detection, response, recovery
- Network management and security –
 performance, configuration, accounting, fault
 management, security management

MASPInet Challenges - Large Distributed Network

- Continental scale
 - Owner
 - single who owns it?
 - multiple collaborating owners interoperability
 - Monolithic or organic?
 - high initial cost if monolithic
- Network management and security
 - performance, configuration, accounting
 - fault and security management

NASPInet Challenges – Quality of Service (QoS) over WAN

- QoS goals per data flow are to minimize latency, delay, jitter, loss, error
- Overall QoS goals are to support dedicated bandwidth, resource provisioning and allocation, avoiding and managing network congestion, shaping network traffic and managing priorities
- Interoperable QoS enforcement potentially across multiple heterogeneous network domains

NASPInet Challenges - Quality of Service (QoS) over

NASPInet Traffic Attribute	Real	-time streamin	Historical data		
	CLASS A Feedback Control	CLASS B Feed-forward Control	CLASS C Visualization	CLASS D Post Event	CLASS E Research
Low Latency	4	3	2	1	1
Availability	4	2	1	3	1
Accuracy	4	2	1	4	1
Time Alignment	4	4	2	1	1
High message rate	4	2	2	4	1
Path Redundancy	4	4	2	1	1

Table key:

4 – Critically important, 3 – Important, 2 – Somewhat important, 1 – Not very important

Examples:

- Real-Time Operations low latency is critical (< 100ms), no gaps in data
- Monitoring and Visualization relatively higher latencies (~seconds) are tolerable, small gaps in data tolerable
- Post Disturbance Analysis lax latency requirements (~ hour), no gaps in data

NASPInet Challenges - Security of PMU Data

Authentication and Integrity

- Essential to ensure reliable and trustworthy decisions
- Tools: cryptographic protocols leveraging digital signatures, HMACs, etc.
- Challenges: efficiency, supporting one-to-many data exchanges, e.g, publish/subscribe and multicast

Availability

- Essential due to the critical nature of underlying power system
- Specific requirements may vary by application classes
- Tools: redundancy, security monitoring, attack detection and response, fail-safe design
- Challenges: scalability and cost-effective design

NASPInet Challenges - Security of PMU Data

Confidentiality

- Needed to prevent unauthorized access to data
- Tools: encryption protocols, access control
- Challenges: efficiency for streaming data, supporting oneto-many data exchanges

Key Management

- Distribution and management of key material and credentials
- Revocation
- Tools: Public Key Infrastructure, on-line credential distribution/verification services
- Challenges: scalability, trust establishment

NASPInet Challenges - Security of PMU Data

- Monitoring and compliance
 - Intrusion detection and response services
 - Future regulations may apply; e.g., NERC CIP
 - Tools: IDS, firewalls, etc.
 - Challenges: multi-organization coordination

- NASPInet enables many exciting and useful PMU data based applications
- Design and deployment of NAPSInet poses many challenges both from networking and security perspectives
- NASPI Data and Network Management Task Team (D&NMTT) is actively working on addressing these challenges

Questions?

rbobba@illinois.edu

