

A Data Centric Approach for Modular Assurance

Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems 23 March 2011

The Real-Time Middleware Experts

Gabriela F. Ciocarlie Heidi Schubert Rose Wahlin

Agenda

- Introduction
 - Mixed criticality systems
 - The challenge
- Data Centric Architecture
 - Modularity
 - Separation Kernels
 - Data Distribution Service (DDS)
- Example
- Recommendations

Mixed Criticality Systems

- Any system that has multiple assurance requirements
 - Safety, at different assurance levels
 - Security, at different assurance levels
- Example: Unmanned Air Vehicle
 - Flight control is safety critical
 - Payload management is mission critical
- Ideally a system is built from components each with their own assurance requirements

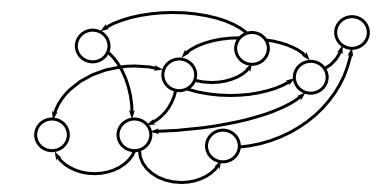
The Challenge

- Design a modular plug-and-play architecture to reduce cost and reuse components
- Components must interact
 - The behavior of one component can affect another
 - It can be advantageous to have components at different criticality levels exchange data
 - Once a component interacts with another, then the whole system must be certified, not the individual components

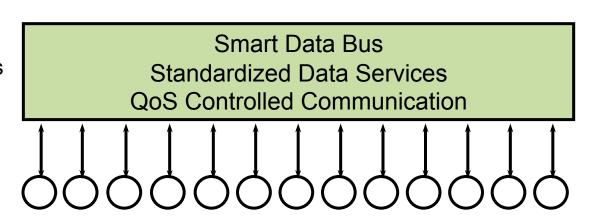
The Solution

- Move from a component-interaction model to a datacentric model
- The data-centric model defines the data types and attributes in the system
- A component complies with the data model in terms of data it sends and receives
- This decouples the applications

Agenda


- Introduction
 - Mixed criticality systems
 - The challenge
- Data Centric Architecture
 - Modularity
 - Separation Kernels
 - Data Distribution Service (DDS)
- Example
- Recommendations

The Modular Approach


Monolithic Approach

- Certify whole system
- Connection oriented
- Tightly coupled
- Hard to evolve

Modular approach

- Certify components
- Data oriented
- Loosely coupled
- Evolvable

The Data Contract

- First, all data in the system is defined
- Next, data characteristics are defined
 - For example "airspeed" is flagged as flight critical
- Then components define data delivery attributes
 - A flight critical component specifies data rate that flight critical data must be delivered
- This creates a "data contract"

Data Centric Approach for Layered Assurance

- Data contract includes
 - Data type
 - Name
 - Quality of Service
- Sender/Receiver of the data is anonymous
- Validation
 - Component validation does it conform to the data model
 - System validation is there a producer at correct assurance level for each required data

Realization in a Layered Assurance System

- Separation Kernels
 - Guarantees isolation of components
 - Controls data flow

- Object Management Group (OMG) Data Distribution Service
 - Used to implement the data model and distribute data

Separation Kernels

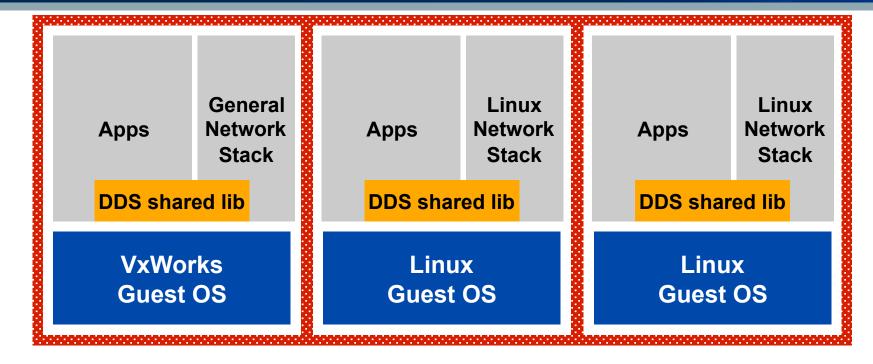
- Base of the solution for mixed-criticality systems certification
- Isolation and Control
 - Each guest operating system (OS) runs in its own partition
 - Each guest OS is isolated over both time and space
 - Information flows are tightly controlled
 - Components can be pre-certified and composed quickly into new configurations

Caveat

 Does not address interdependency between components or interactions between components on separate computers

Data Distribution Service (DDS)

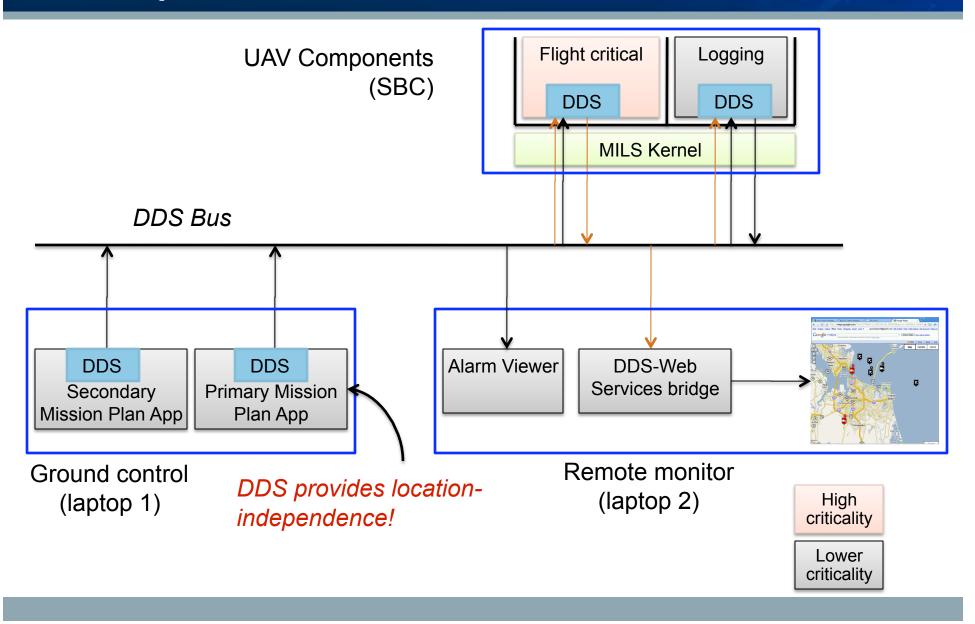
- Data-centric publish-subscribe middleware for real-time communication
 - Strong data typing
 - Quality-of-Service (QoS) parameters
 - e.g., deadlines for message delivery, bandwidth control, reliability model control, failover and backup specification, data filtering etc.
- DDS QoS parameters characterize:
 - the data contracts between participants
 - the properties of the overall data model
 - real-time communication and delivery requirements on a per-data-stream basis



Agenda

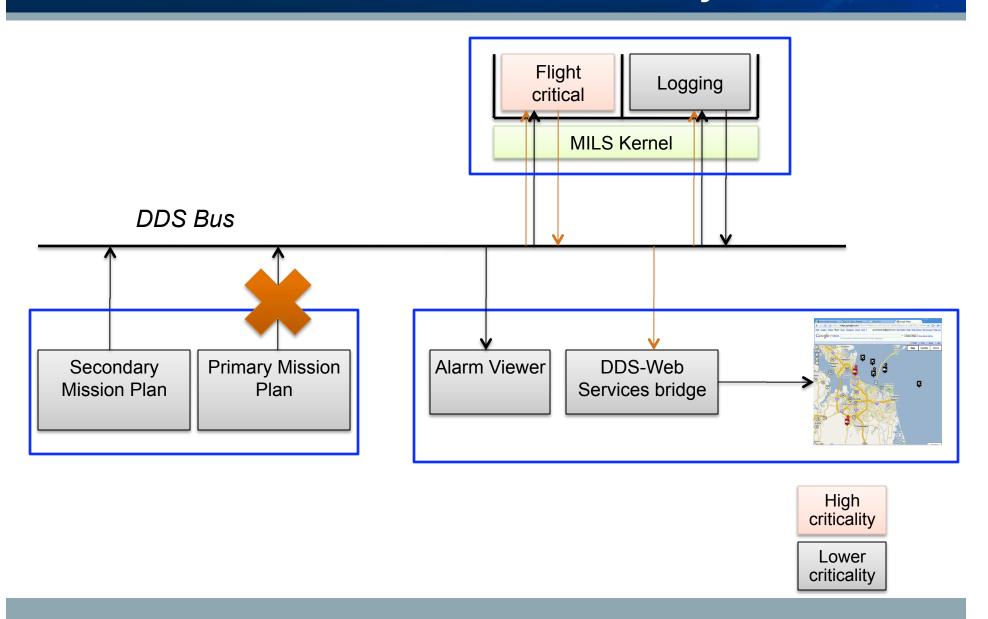
- Introduction
 - Mixed criticality systems
 - The challenge
- Data Centric Architecture
 - Modularity
 - Separation kernels
 - Data Distribution Service (DDS)
- Example
- Recommendations

Example: Wind River VxWorks MILS and RTI Data Distribution Service

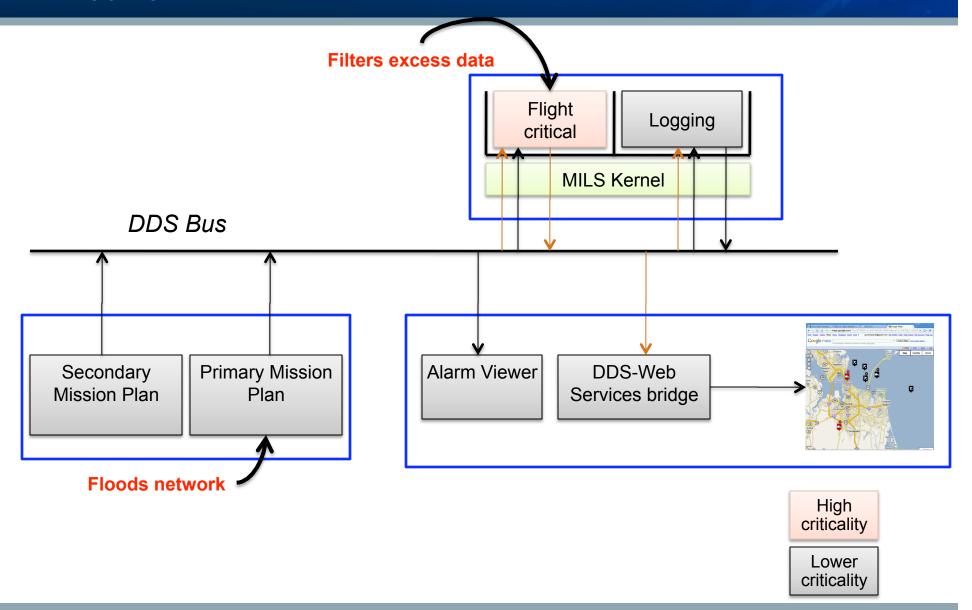

VxWorks MILS Separation Kernel

Wind River Hypervisor Technology

Hardware (Processor + Board)



Example Demo Overview



Scenario 1: Failover of Lower Criticality

Scenario 2: Lower Criticality Floods the Network

Agenda

- Introduction
 - Mixed criticality systems
 - The challenge
- Data Centric Architecture
 - Modularity
 - Separation kernels
 - Data Distribution Service (DDS)
- Example
- Recommendations

Tenets for Developing Safety-Critical Software

- Reduce code size
- Consider testability in design
- Enable verification
 - Avoid recursion
 - Set limits for example limits on iterations
- Deterministic in time
- Deterministic in memory
 - No dynamic memory allocation after startup

Challenges DDS for in Safety-Critical Systems

- DDS is designed to be dynamic
 - Entities discovered at run-time
 - Number of nodes and endpoints can change
 - DDS adaptable to changes in the environment, for example increasing a sample queue
- DDS is feature rich
 - Implementations can have many lines of code, making certification costly
 - Many features either not suitable or not applicable to safetycritical systems

DDS Discovery

- The process by which domain participants find out about each other's entities
 - Each participant maintains database on other participants in the domain and their entities
- Happens automatically behind the scenes
 - "anonymous publish-subscribe"
- Dynamic discovery
 - Participants must refresh their presence in the domain or will be aged out of database
 - QoS changes are propagated to remote participants

DDS Discovery in Safety-Critical Systems

Do not want

- An a priori unknown number of participants connecting
- An a priori unknown number of remote Data Writer/Data Readers

Do want

- To know if remote participants are up
- A simple protocol

Solution

- Stage 1: the same, dynamic participant discovery
- Stage 2: static loading of endpoints

Memory Model

- In DDS, queue sizes can change
 - Discovery queues grow when more nodes join the system
 - Data queue sizes grow to accommodate more data
- In a safety-critical system, memory must be deterministic
- Solution
 - Set all resource limits before creating entities
 - Memory is only allocated during _create calls
 - There is no memory growth policy

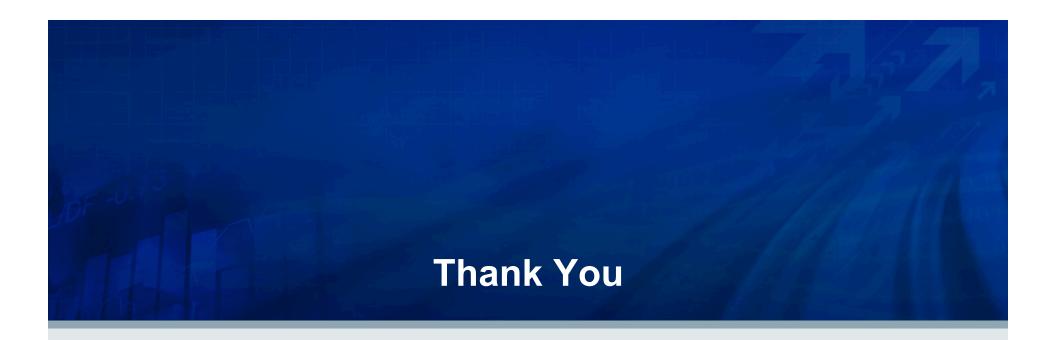
DDS Feature Set

- Support the same entites
 - Domain Participant, Publisher, Subscriber, Data Reader, Data Writer, Topic
- Need core DDS APIs
 - Create entities
 - Write/Read
 - Listener for data available
 - Get QoS and Entities
- RTPS wire protocol compatibility

QoS supported

- QoS needed for safety-critical systems
 - Best-effort communication
 - Reliable communication
 - History queue
 - Reader and Writer Deadline
 - Manual assertion of liveliness by topic
 - Time-based filter Filter only on the reader
 - Ownership
 - Ownership strength

Conclusions


- Mixed-criticality systems certification can go a long way
- We can leverage:
 - Isolation and control capabilities through separation kernels
 - Modularity through a data-centric architecture

- It is possible to build mixed criticality systems that provide:
 - Modularity
 - Evolvability
 - Fault tolerance

Acknowledgments

- Wind River provided their MILS platform as well as valuable feedback
- United States Air Force contract FA8650-10-M-3025
 - The content of this work is the responsibility of the authors and should not be taken to represent the views or practices of the U.S. Government or its agencies.

