DDS for SCADA

Erik Boasson

Senior Engineer PrismTech

erik.boasson@prismtech.com

The mismatch

What is DDS?

- Primarily, the DDS 1.2 standard
 - a programming model
 - an interface specification
- The standard operates at the level of an implementation
 - consequently, its applicability is a subset of that of the programming model

Copyright 2012, PrismTech – All Rights Reserved.

What is DDS?

- "DDS is not a good fit"
 - refers to the implementation-level specification
- "as it stands today"
 - standards can be extended and amended

- Supervisory Control and Data Acquisition
- In practice covers such things as
 - system monitoring
 - closed-loop control systems
 - operator interface to a system

- Supervisory Control and Data Acquisition
- In practice covers such things as
 - system monitoring
 - closed-loop control systems
 - operator interface to a system

- Feedback loop
 - thousands to millions of sensors and actuators
 - multi-layered control system
- Other aspects we ignore here
 - operator interfaces
 - off-line optimisation
 - post-mortem analysis

- Control blocks
 - control blocks often a given
 - "only" need to parametrize them
- Interconnections
 - it matters which specific sensor you use
 - fairly static

DDS

- Typically viewed as publish-subscribe
- From the OMG DDS Portal:
 - DDS is the first open international middleware standard directly addressing publish-subscribe communications for real-time and embedded systems.
 - DDS introduces a virtual Global Data Space where applications can share information by simply reading and writing data-objects addressed by means of an application-defined Topic and a key.

DDS

- It really is the other way around:
 - DDS introduces a Global Data Space
 - pub-sub is a possible implementation

DDS and SCADA

- System state as a shared data space
 - containing measurement and control values
- Subscribe to individual measurements, &c.
 - topic per measurement, &c.
- Problem solved

DDS and SCADA

- System state as a shared data space
 - containing measurement and control values
- Subscribe to individual measurements, &c.
 - topic per measurement, &c.
- Problem solved well, not quite!

Why not?

- DDS doesn't scale nicely to millions of topics
 - or readers and writers for that matter
 - resource consumption
 - discovery times
 - traffic overhead

Alternative mappings

- No requirement to have that many topics
- Must avoid fitting problems to solutions

If not this, then what?

- What can we throw out profitably?
 - multitude of QoS settings
 - detailed metadata
- Cost incurred by these
 - complexity in discovery
 - increased footprint
 - slower data handling
 - higher network load

Assume

- processing equidistantly sampled signals
- control loop is hard real-time
- network is highly reliable
- procedure for dealing with lost samples

Then

OpenSplide DDS

only latest values need to be kept around

- Data space characteristics
 - millions of "topics"
 - one (or a handful of) data type(s)
 - a small selection of QoSs
- Control block naming
 - GUIDs will do in practice
- Operations
 - read & write

- Domain-specific DDS variant
- Self-evident that you can implement this
 - with a small footprint
 - including dynamic discovery
- Obviously not covering all aspects

Copyright 2012, PrismTech – All Rights Reserved.

Desiderata

- Integrated with rest of DDS
- Leverage DDS features
- Simple interface

Approach

- Transient data for subscriptions
- Dynamically mapping data to partitions
- One topic for data

Approach

- Partitions in a small system
 - one partition per node
 - a common partition
- Subscriptions in two partitions
 - in its own & the common partition
- Publishing partition chosen dynamically
 - one subscribing node: that node's partition
 - multiple subscribing nodes: common partition

Approach

- Experiments show very load overhead
 - negligible CPU load
 - low memory overhead
 - ~10% network overhead
- Special care taken to minimise cost of updating values for which no subscriber exists
 - this is, after all, one of the real promises of DDS
- Potential for integrating into DDS proper

Conclusion

Conclusion

- DDS can be used as a foundation for domain-specific data spaces
- The large feature set of DDS can be a problem rather than a solution
- It is important to distinguish between the programming model & the implementation