PRESTO: Improvements of Industrial Real-time Embedded Systems Design and Development

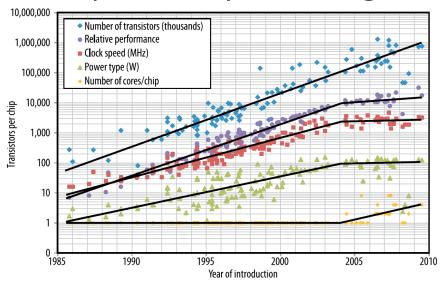
Imran Quadri, PhD.

OMG Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems, 18th April 2012, Paris-France

Overview

- **□** Introduction
- ☐ PRESTO
 - Overview
 - End User Case Studies
 - Challenges
- **☐** Conclusion
- ☐ Demo (THALES C&S Case study)

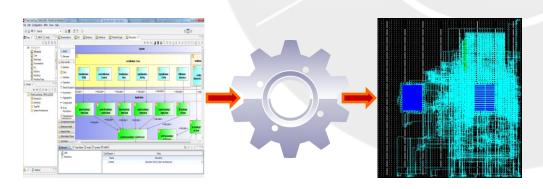
Introduction



Context: Real-Time Embedded Systems

Current design challenges

 Real-Time Embedded Systems (RTES) are exponentially increasing in complexity



- The "Design Productivity Gap"
 between Hardware and Software development
 - Increase in Time to Market and Overall Costs

What to do?

- Effective design methodologies needed
 - Elevation of design abstraction levels
 - Hand tuned coding at Register Transfer Level (RTL)→ High Level
 Synthesis (HLS)→
 - Co-Design (Y- Chart)
 - Component based approach (e.g. AADL)
 - IP-Reuse (e.g. OPC; IP-XACT)
 - Model Driven Engineering
- Increasing synergy
- Separation of concerns

PRESTO

(ImProvements of industrial Real Time Embedded SysTems develOpment process)

PRESTO Overview: Objectives

- Improve upon current RTES practices
- System Level Exploration
 - To enable early functional and performance analysis, platform optimization and validation

Test traces exploitation (e.g. System functional/non functional requirements)

SYSTEM LEVEL EXPLORATION

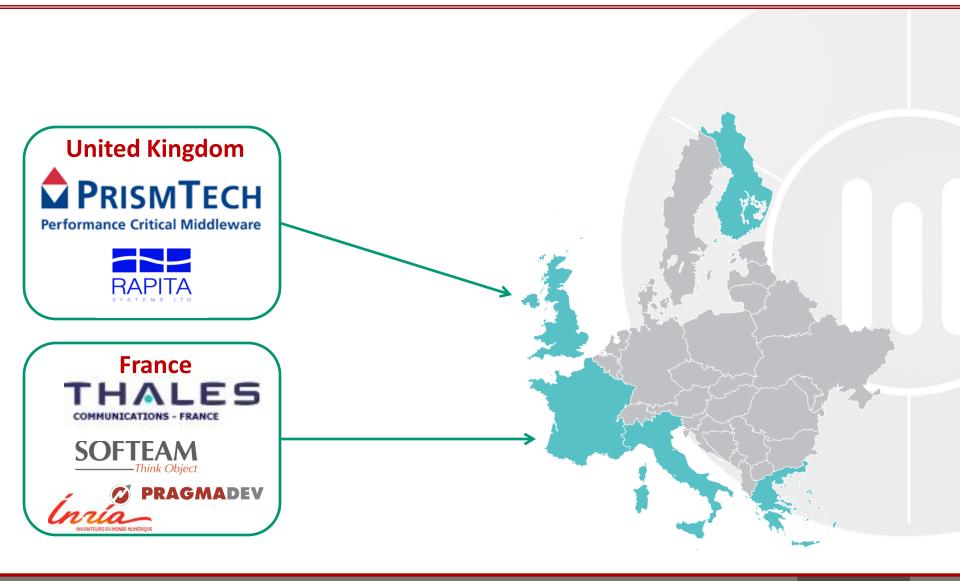
W
C
E PERFORMANCE
T

PRESTO Overview: Consortium Information

• Coordinator: Teletel (Greece)

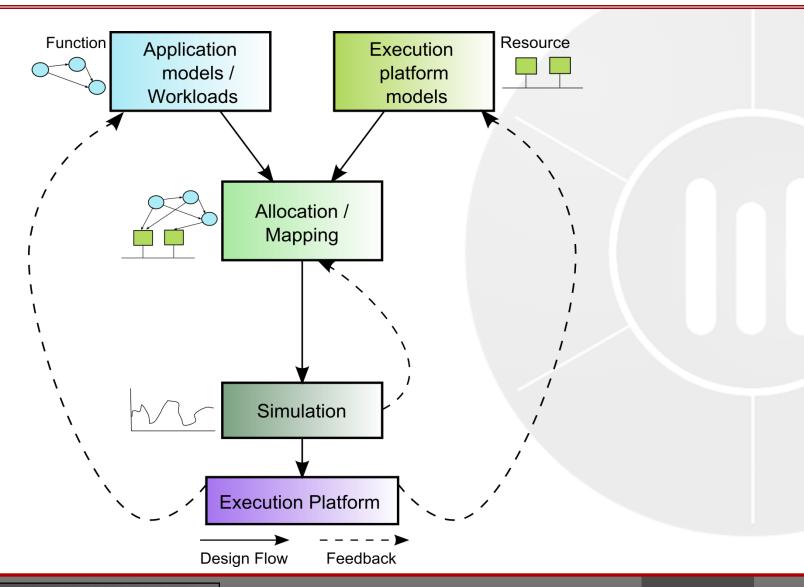
• Budget: **8.6 M€**

Total Effort: 852 pm

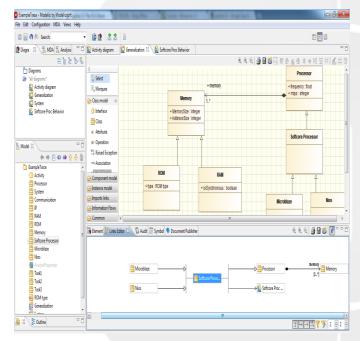

Start date: April 2011

Duration: 36 Months

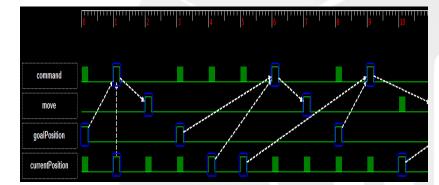
- 5 countries
 - 13 partners (8 SMEs)


PRESTO Overview: Consortium Information

PRESTO Overview: Consortium Information



PRESTO Overview: Design Methodology


Modeling RTES for System Level Exploration

- System modeling (Hardware/Software and their allocation
 - Approach: Classical Y-chart
 - Standards/Specifications:
 - MARTE, EAST-ADL, SDL, SCA ...
 - Integrating aspects:
 - Timing,
 - Performance,
 - WCET analysis
 - Schedulability
- Model refinements
 - Trace integration and visualization at model level

Trace Driven Analysis

- Common Test Trace format definition, generation and exploitation
- Types of traces:
 - Test cases/Specification traces,
 - Raw/Execution traces
 - Filtered traces/result scenarios

- Trace filtering
 - Relevant traces to reduce set of inputs/states for each trace
- Functional properties verification
 - End user initial system requirements, causal properties, etc.
- Non functional properties verification
 - Deadlines, periodic, sporadic behaviors, etc.

Software Design Flow Improvement

- Temporal logic in test scenarios
 - Timing constraints: Rate, latency, jitter, synchronization, etc
- Code instrumentation
 - Automatic code generation
- Trace generation, comparison
- Functional properties verified by generated traces from test executions
- Non functional properties verified by means of performance analysis tools

Hardware/Platform Design Flow Improvement

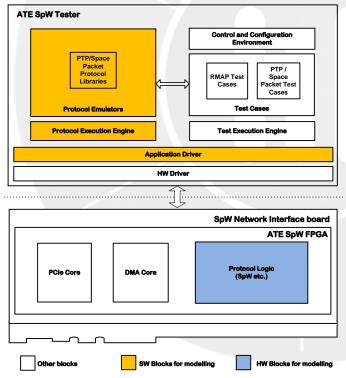
- Initial evaluation results from high level models via trace results
 - Performance estimation of applictation ⇒ execution platform
- Virtual platforms
 - Application software binaries onto platform model (Simulation)
 - Compare different different performance simulation models
- Simulation/Execution platform implementation results comparison
 - Useful for fast prototyping tool performance predictions
 - Refining initial platform models

End user case studies (MILTECH)

 Automated Test Equipment (ATE) for on-board communications based on SpaceWire (SpW)

Protocol Validation & Testing System for satellite on-board

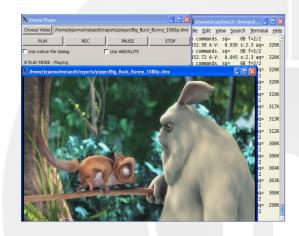
communications


- SpaceWire standard support
- Protocol Validation & Testing
 - Test cases development & execution
 - Protocol Emulators

SpaceWire Card

Workstation

End user case studies (THALES C&S)


- TDMA radio protocol case study
 - Part of a "Time Division Multiple Access" Radio Protocol
 - Supports only a single traffic corresponding to the transmission of short messages with fixed length
 - More details in subsequent demo

	Cycle																								
	Frame 0						Frame 1				Frame 2					Frame 3					Frame 4				
S	80	S1	S2	S3	S4	S0	S1	S2	S3	S4	S0	S1	S2	S3	S4	S0	S1	S2	S3	S4	S0	S1	S2	S3	S4

End user case studies (continued)

- THALES Italy
 - Frequency Hopping Ultra Wide Band (FH UWB) application for indoor position
- TELETEL
 - MANET device case study
- Several internal experiments for improving design practices
 - For e.g. VTT's FFMPEG application implementation on Open Virtual Platform (OVP), Panda Board

Challenges in PRESTO

- Interexchange between:
 - Different standards, specifications or languages (MARTE, SCA, SysML, AADL, EAST-ADL, fUML, SDL, SystemC ...)
 - Different tools (Modelio, MetaEdit+, Spectra CX, TimeSquare, ABSOLUT, MOSES, MSC Tracer...)
- Adapting different end user design flows to the PRESTO methodology
- Positive influence on RTES community



Conclusion

Conclusion

- PRESTO
 - From high level design abstraction levels to execution platform implementation
- Improving existing RTES practices in several application domains
- Contribute to future revisions of OMG standards
 - O MARTE, SysML...

Questions?

Thanks!

Imran Quadri SOFTEAM | ModelioSoft

Imran.quadri@softeam.fr

PRESTO Project Web Site:

http://www.presto-embedded.eu/

SOFTEAM R&D Web Site:

http://rd.softeam.com

ModelioSoft Web Sites:

http://www.modeliosoft.com

http://www.modelio.org

Modeling solutions.