

## DDS in Low-Bandwidth Environments

Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems
April 17-19, 2012, Concorde La Fayette, Paris, France

Jaime Martin Losa
CTO eProsima

JaimeMartin@eProsima.com
+34 607 91 37 45

www.eProsima.com

## **Agenda**

- DDS in Low-Bandwidth environments
  - Motivations
  - DDS Behaviour out-of-the-box
    - Poor performance
    - Reasons
    - Optimizations Required
    - Performance after optimizations
    - Available Market Products/ Success Cases
  - Optimization Details
    - Discovery
    - Data Compression
    - Protocol





#### **Motivations**

**DDS in Low Bandwidth Enviroments** 

#### **Motivations**

- Currently, DDS main market is Defense
  - Defense applications use intensively radio & satellite links
- Features of Tactical Radio & Satellite links:
  - Low Bandwidth: Even 2400 bps or less.
  - Shared Bandwidth: Even 32 nodes or more.
  - Disconnections and Packet Loss
  - High lantency.



## **Motivations (II)**

- Radio link typical Capabilities:
  - VHF Radio (Range 20 km): < 64 kbps shared</li>
  - UHF Radio (Range 1 km): <1 Mbps shared</li>
  - 4-32 nodes sharing bandwidth in the same Radio net.
  - High latency, Packet loss, disconnections
- Satellite link typical capabilities
  - Channel bandwidht: from 64 kbps to several Mbps
  - High latency, Packet loss, disconnections



## **Motivations (III)**

- Real Example: Spanish Army
  - Uses VHF, UFH and Satellite links intensively for Data Transmisions.
  - Propietary comms solutions for their different C2 systems
    - Poor Performance
    - Lack of Interoperability





## DDS Behaviour out-of-the-box

**DDS in Low Bandwidth Environments** 

#### **DDS** Behaviour out-of-the-box

- Very Long discovery times
- Very Low effective throughput
- Example: 6 nodes, VHF Radios (4800 bpsshared), RTI DDS
  - Discovery: >45 Min! (unusable)
  - Effective throughput: <100 bps! (unusable)</li>



#### Poor performance: Reasons

- Chatty discovery protocol
  - Requires dozens of messages for a single system
  - Number of messages = K\* (Number of Nodes)^2
- Large Protocol Headers
  - RTPS tipical header is 56 bytes long
- DDS does not compress data.
- Qos default values are not the best suited for this scenario.



## **Optimizations required**

- Discovery: Reduce the number of messages
  - Should be of the order of number of nodes
  - The payload of the discovery messages should be small
- Protocol:
  - Reduce header length
- Compress data and metadata
- Use Multicast for data, metadata & heartbeats
- Qos: Set up according bandwidth and latency
- Nack Based Reliability, Use of flow controllers, Type optimization...



## Performance after optimizations

- Discovery:
  - Number of messages = O(number of nodes)
  - Very small message payload, 100-150 bytes.
- RTPS Headers
  - Reduced from 56 to 26 bytes
- Data Compression:
  - 50%-80% of compression for tipical C2 data
- Multicast for Data, Discovery metadata and heartbeats
- Nack Based Reliability, Use of flow controllers, Type optimization...



## **Performance Example**

 Example: 6 nodes, VHF Radios (4800 bpsshared), RTI DDS

|                           | Out of the Box | Optimized      |
|---------------------------|----------------|----------------|
| Discovery Time            | >45 min        | <20 seg        |
| Effective data throughput | <100 bps       | >2000 bps (*1) |

(\*1) Radio Effective bandwidth decreases with number of nodes.

- Example app: C2 system: squadrons of 6 tanks
  - Quick System Startup
  - Update position and status every 5 seconds
  - Bandwidth Room for alarms, tactical chat, enemy positions, etc.

#### **Available Market Products**

- eProsima Low Bandwidth Plugins for RTI DDS
  - eProsima LB Discovery Plugins
  - eProsima LB Compression Transport
  - eProsima LB Optimized RTPS Transport
  - eProsima LB Simulation Transport
    - Allow Radio/Satellite link simulation
  - All plugins can be used together.
- Success Case: Spanish Army
  - Spanish Army selected DDS for C2 interoperability.
  - Intensive use of VHF Radios
  - Implemented already in three main C2 systems.



## **Available Market Products (II)**

- OpenSplice Supports ZLIB compression and static discovery
- OpenDDS, CoreDx, others: ?





# Discovery Optimization Details

**DDS in Low Bandwidth Enviroments** 

#### **Overview**

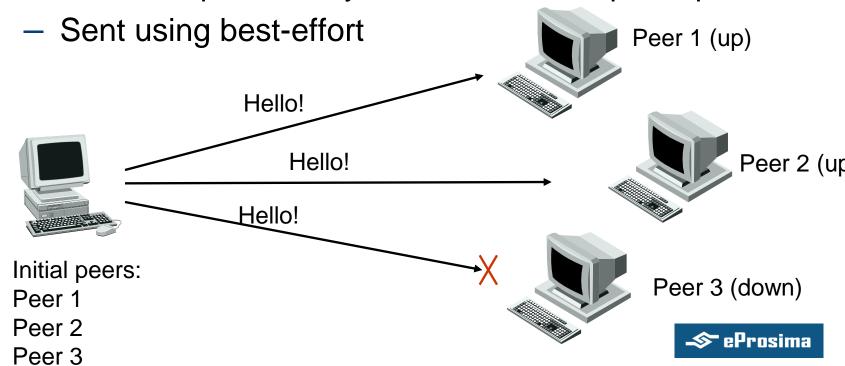
- What is discovery?
- Discovery phases
  - Participant discovery phase
  - Endpoint discovery phase
- eProsima LBDP
  - Endpoints Plugin: LBEDP
  - Participant Plugin: LBPDP
- User Traffic Hints.



## What is discovery?

- The process by which domain participants find out about each other's entities
  - Each participant maintains database on other participants in the domain and their entities
- Happens automatically behind the scenes
  - "anonymous publish-subscribe"
- Does not cross domain boundaries
- Dynamic discovery
  - Participants must refresh their presence in the domain or will be aged out of database
  - QoS changes are propagated to remote participants



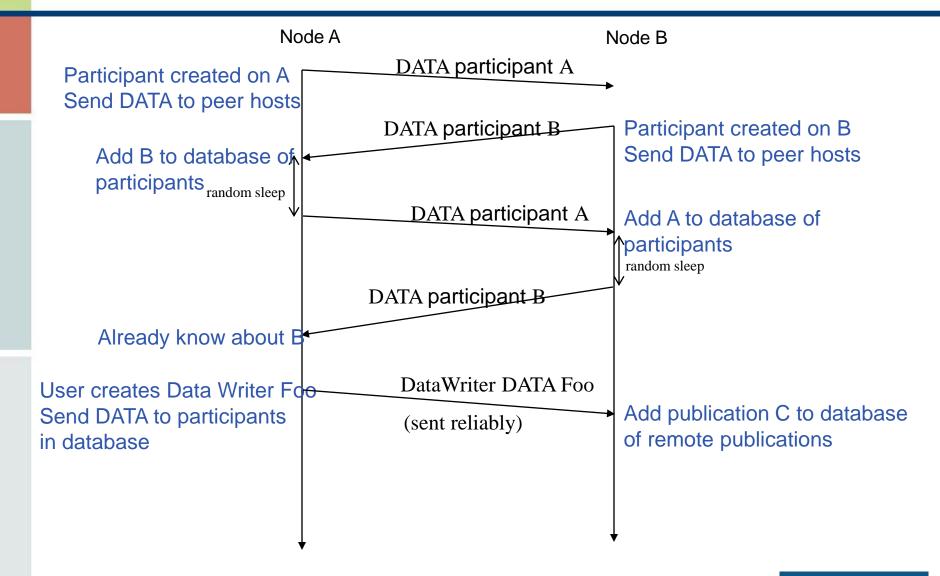

## **Discovery phases**

- Two consecutive phases
  - Participant discovery phase
    - Participants discover each other
    - Best-effort communication
  - Endpoint discovery phase
    - Participants exchange information about their datawriter and datareader entities
    - Reliable communication
- Steady state traffic to maintain liveliness of participants



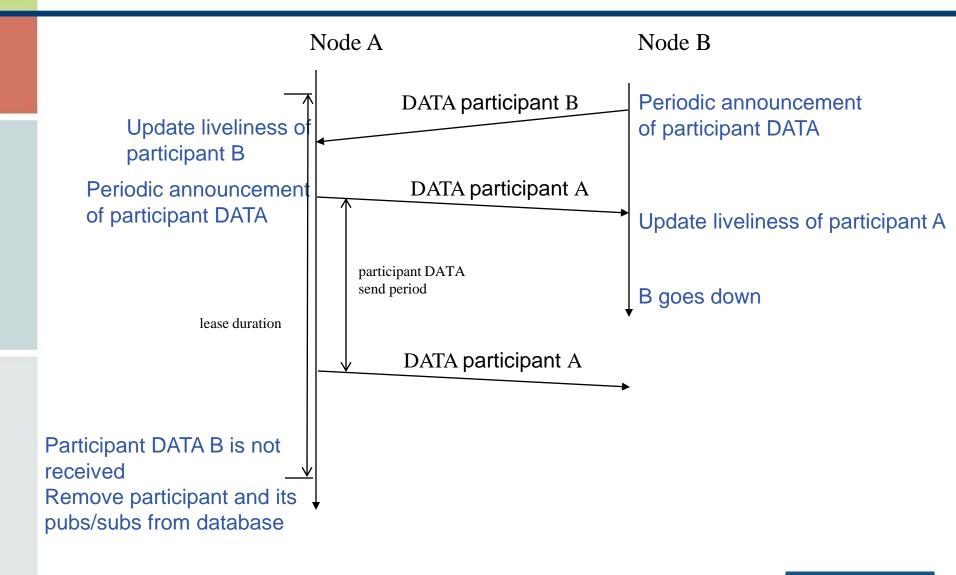
## Participant discovery phase

- Participants periodically announce their presence using RTPS DATA message
  - Contains participant GUID, transport locators, QoS
  - Initially sent to all participants in "initial peers" list,
     then sent periodically to all discovered participants




## **Endpoint discovery phase**

- DataWriter/DataReader discovery
  - Send out pub/sub DATA to every new participant
  - NACK for pub/sub info if not received from a known participant
  - Send out changes/additions/deletions to each participant
- Uses reliable communication between participants
- DDS matches up local and remote entities to establish communication paths



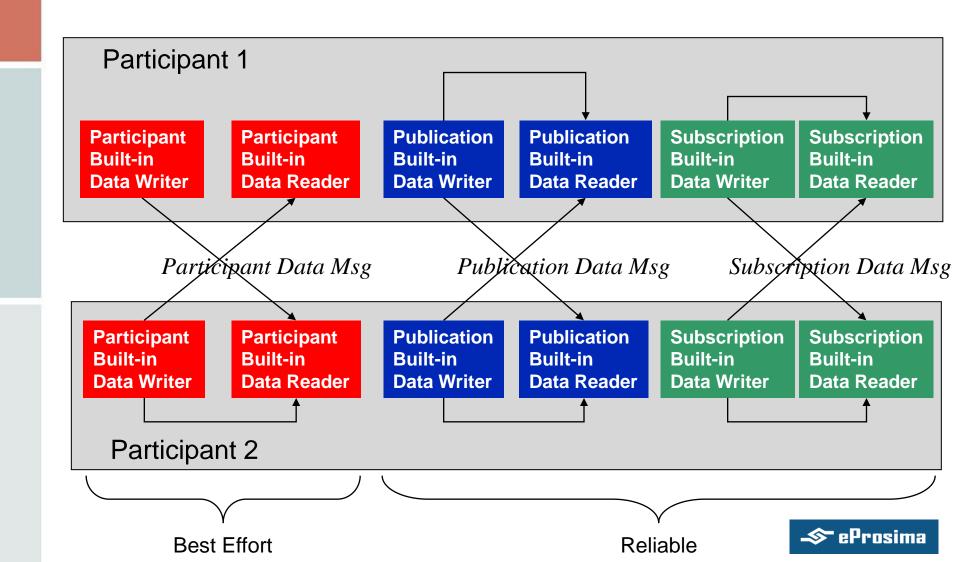

## **Discovery start-up traffic**



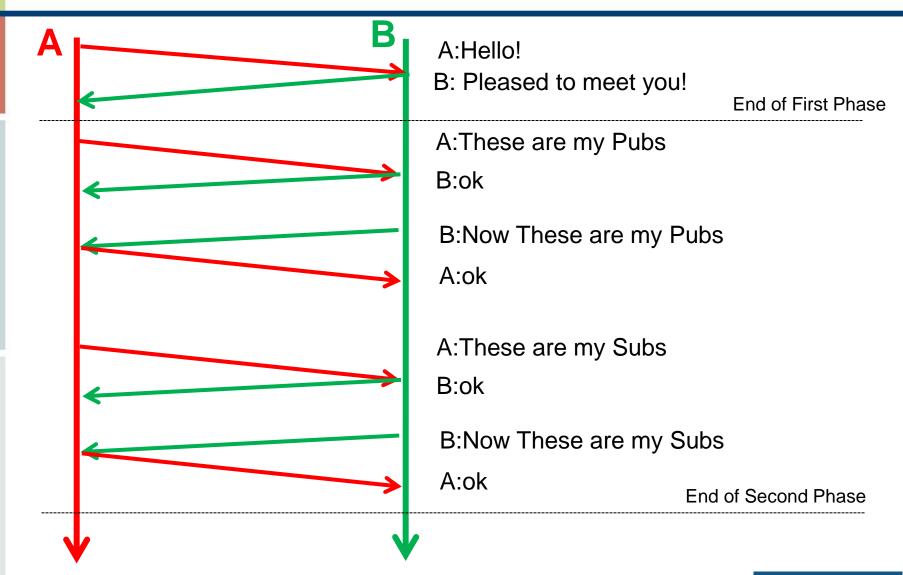


## **Discovery steady-state traffic**






## **Discovery Implementation**


- Discovery is implemented using DDS entities known as Built-in Data Writers and Built-in Data Readers
  - Uses same infrastructure as user defined Data Writers/Data Readers
  - Participant data is sent best effort
  - Publication/subscription data is sent reliably
- Three Built-in topics (keyed):
  - DCPSParticipant
  - DCPSPublication
  - DCPSSubscription



## **Discovery Entities**



## **Discovery phases: Visually**



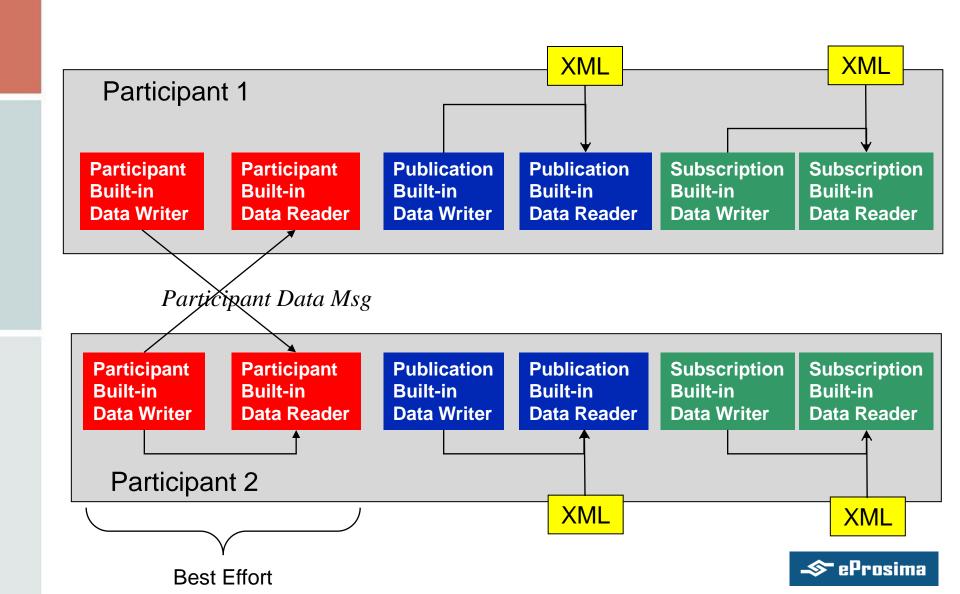


#### **Endpoints Discovery Optimization**

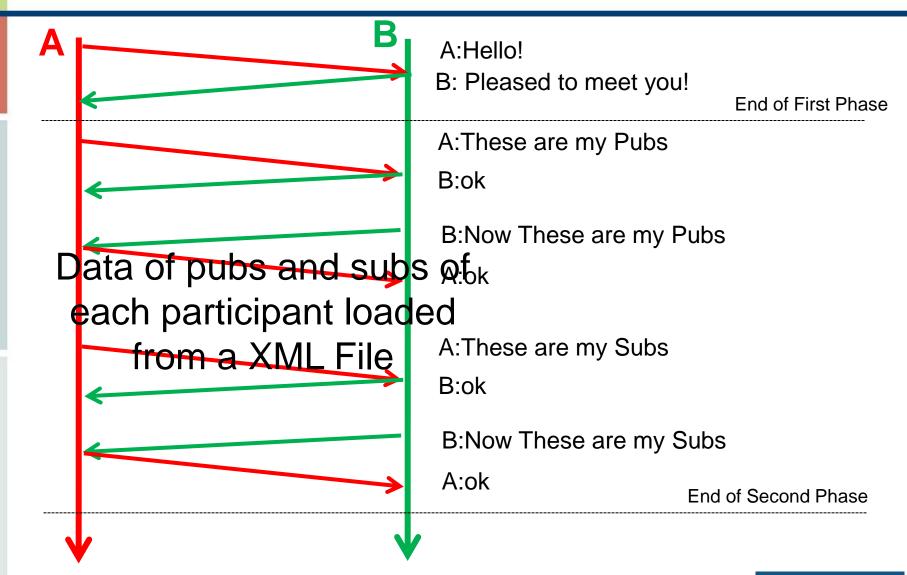
#### Goals:

- Reduce the discovery information transmitted.
- Reduce net traffic: Less Packets.

#### Scenario:


 We now most details of the participant applications in advance.

#### Solution:


- Suppress second discovery phase.
- Information about endpoints stored in XML files.



## **Endpoints Discovery Optimization**



## **File Based Discovery**



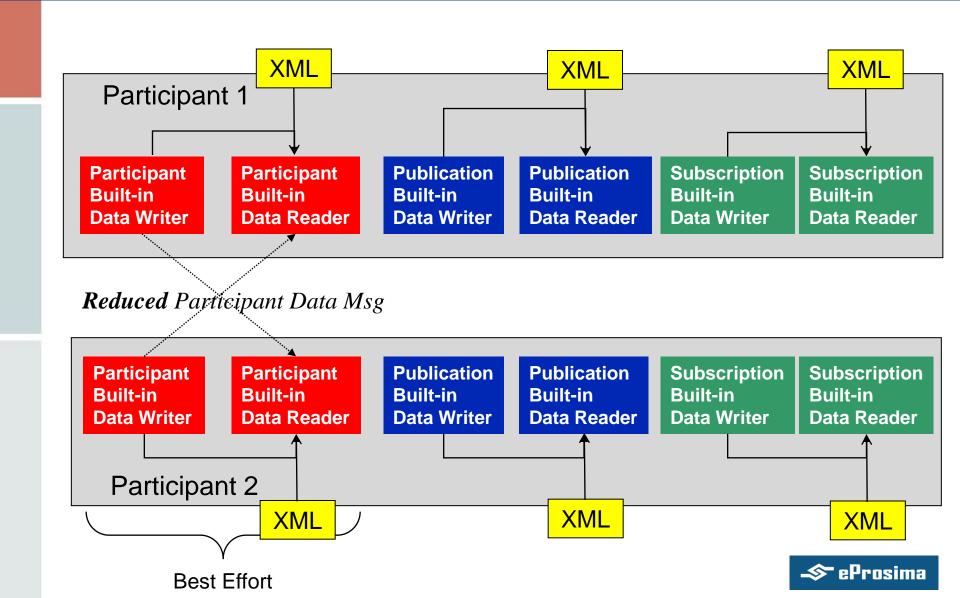


#### **Participant Discovery Optimization**

#### Goals:

Reduce even more the discovery information transmitted.

#### Scenario:


 We now most details of the participant applications in advance.

#### Solution:

- Reduce the participant information transmitted.
- Information about participants stored in XML files.



## **LBPDP: Discovery Entities**



#### Results

- Number of messages = O(number of nodes)
- Very small message payload, 100-150 bytes
- Very low discovery times.





# Data Compression Optimization details

**DDS in Low Bandwidth Environments** 

## **Compression details**

- Compression at Transport Level
- Several compression libs used
- Several modes of operation



## **Compression at transport level**

- Compression at Transport Level
  - Stackable: Use it in any transport: UDP, Serial, Ad hoc...



## Several compression libs

- Several compression libs used:
  - ZLIB
  - BZIP2
- Easy to add more by the user.
  - Through Public API.
- Tested:
  - LZO: LZO1X, LZO1B & LZO1F
  - UCL: UCL\_NRV2B, UCL\_NRV2D & UCL\_NRV2E



## Several modes of operation

- Several modes of operation:
  - Fixed Algorithm
  - Algorithm depending on packet size.
  - Automatic: when CPU is not the bottleneck, the plugin select the best algorithm for each package.





# RTPS Optimization Details

**DDS in Low Bandwidth Enviroments** 

### **Optimized RTPS: Overview**

- Optimized RTPS for low bandwidth scenarios
- Implemented as a transport.



# **Optimized RTPS**

- RTPS Optimizations:
  - RTPS Header from 20 bytes to 1 byte.
  - RTPS SubmessageHeader from 4 to 3 byte.
  - RTPS extraflags for DATA and DATA\_FRAG eliminated (1 byte)
  - ReaderID and WriterID from 4 to 1 byte each (so 2^3 writers or readers per participant)
  - SequenceNumber from 8 to 5 or less bytes (more than enough for these scenarios)
  - **—** ...
- Save more than 30 bytes!



# eProsima LB RTPS: Implemented as a transport

- Implemented as a transport
- Stackable:
  - Can be used with any transport and it is stackable, so for example you could use:
  - LB RTPS -> UDP
  - LB RTPS -> Compression Transport -> UDP





### **About eProsima**

#### **About eProsima**

- Experts on middleware, focused on DDS.
- OMG Members.
- RTI DDS Distributor for Spain and Portugal.







#### **About eProsima: Products And Services**

- eProsima Products:
  - DDS based: Plugins, add-ons, adaptors, etc
- Services:
  - Communication modules, App development, DDS training, Support.
- R&D:
  - R&D Projects with enterprises and universities.
- Quality: ISO 9001
  - Design, Development, Marketing and Support of Software.





# **Customers (I)**

#### • Amper Programas:

- BMS
- Simacet (Main Spanish C2 System)

#### Cassidian:

- UAVs Neuron, Atlante
  - Ground Station Comm Server

#### INDRA:

- Defense (BMS, UAV PASI)
- Air Traffic Control,
- SESAR, ATC Interoperability

#### Spanish Army:,

IDT :Tactical Data Interface











# **Customers (II)**

- Isdefe
- Spanish Army: JCISAT, DGAM
- CATEC-FADA: R&D Aerospatial
- Santa Barbara: Armoured Vehicles
- RTI
- **GMV**





Santa Bárbara Sistemas









# **Customers (III)**

- Tecnobit: COSMOS, Reserved Projects.
- IKERLAN: R&D.
- Navantia: F105 (Aegis)
- Boeing: Atlantida, Swim suit











#### eProsima Products.- Index

#### • eProsima Low Bandwidth Tools for DDS:

- Set of plugins to enable DDS communications over low bandwidth links, optimizing the protocol and compressing the data.
- Includes a simulation plugin to simulate different links such Tactical Radios and Satellites
- eProsima Client-Server:
  - RPC over DDS
- eProsima DDS-Web Services Bridge
  - Enables DDS Enterprise Integration
- eProsima DDS Non-Intrusive Recorder.
  - Stores DDS communication history in a data base.





# Thank you!

Jaime Martin Losa
CTO eProsima

JaimeMartin@eProsima.com
+34 607 91 37 45

www.eProsima.com