Global Scheduling and Binding in a Real-Time Embedded Distributed System

Lisa DiPippo
Victor Fay-Wolfe
Oleg Uvarov
Angela Uvarova
University of Rhode Island

Trudy Morgan
U.S. Navy SPAWAR Systems Center

Louis DiPalma
Raytheon

Peter Kortmann
TriPacific Software, Inc.
Presentation Outline

- Dynamic QoS Services
- Dynamic QoS Services Architecture
- Global Scheduling
- Dynamic Binding
- Adaptive Meta-Service
- Application
Dynamic QoS Services

- **Global Distributed Services**
 - UAV
 - Combat System

- **High-level distributed middleware scheduling**
- **Low-level middleware /endsystem scheduling**
- **RT OS level scheduling**

- **Work within open systems / COTS**
- **QoS with focus on real-time**
Dynamic QoS Services Architecture

- System Designer
- Offline RT Analysis and Prototyping
- Global Scheduling Service
- Adaptive Meta-Service
- Dynamic Binding Service
- RT QoS Server Object
- RT Operating System
- Real-Time ORB
- Network

Client

RT Operating Systems
Dynamic QoS Services Architecture

- System Designer
- Offline RT Analysis and Prototyping
- Global Scheduling Service
- Adaptive Meta-Service
- Dynamic Binding Service
- RT QoS Server Object
- RT Operating Systems
- Real-Time ORB
- Network
- Client
- RT Operating System

Lisa DiPippo
July 18, 2002
Global Scheduling Service

priority assignment, overload management, priority mapping, concurrency control

RT QoS Server Object

RT QoS Server Object

RT QoS Server Object

RT Operating Systems
Global Scheduling Service

- Accepts client deadline and importance
- EDF schedulability analysis
- Global Prio assignment and adjustment
- Overload management – load shedding based on importance
- Basic Priority Inheritance based CC
- Sets servant global Priority
Global Scheduling Algorithms

- Overload management
 - Load shedding
 » When requested task cannot be scheduled, scheduling service must “shed” one or more tasks
 » Compute *Shedding Parameter* (SP) based upon:
 - Importance
 - Remaining execution time
 » Shed task with smallest SP
 - Load reduction
 » variation on load shedding
 » reduce execution time and quality of task result instead of shedding
Dynamic QoS Services Architecture

- Global Scheduling Service
- Adaptive Meta-Service
- Dynamic Binding Service

Offline RT Analysis and Prototyping

System Designer

RT Operating System Real-Time ORB RT Operating Systems

Client

Network

RT QoS Server Object

RT QoS Server Object

RT QoS Server Object

RT Operating Systems
Dynamic Binding Service

Bind a client to best object based on real-time criteria

RT Operating System

Network

Client

Dynamic Binding Service

RT QoS Server Object

RT QoS Server Object

RT QoS Server Object

RT Operating Systems
Dynamic Binding Service

- Servers register service and execution times
- Clients request service with deadline
- Binding Service finds all servers that offer the service
- Eliminates those on which load will not fit
- Chooses among remaining servers based on Slack-Time Driven Load Allocation Heuristic

RT Operating System

RT Operating Systems

RT QoS Server Object

RT QoS Server Object

RT QoS Server Object
Load allocation

- Goal: Choose the node on which new task fits most tightly, but where tight tasks are finishing soon
- Similar to “Best Fit”
- Computer *Allocation Parameter* (AP) for each candidate node based on:
 > minimum slack time of all tasks with shorter deadline than new task
 > deadline of task with minimum slack time
- Choose node with minimum AP
Dynamic QoS Services Architecture

- RT Operating System
- Global Scheduling Service
- Adaptive Meta-Service
- Dynamic Binding Service
- Offline RT Analysis and Prototyping
- System Designer
- RT QoS Server Object

Network
Adaptive Meta-Service

- *Hierarchy of service configurators*
- *Services specify parameters, policies and algorithms*
- *Meta-service sets parameters, policies and algorithms*
- *Makes trade-off among conflicting policies, etc.*
Adaptive Meta-Service

Sets RT sched policy (e.g. Rate-monotonic or EDF)

Performs Real-Time Scheduling

Sets Security Policy

Sets Policies to Tradeoff Real-Time For Security

Service Extension Interface

Real-Time Meta-Service

Control Service Interface

QoS Meta-Service

Control Service Interface

Service Extension Interface

Sched Service Interface

Service Interface

Service Interface

Binding Service

Client

Client

Client

Client

Client

Client

Service Extension Interface

Security Meta-Service

Control Service Interface

Service Extension Interface

Service Extension Interface

University of Rhode Island

Lisa DiPippo
July 18, 2002
BBN’s UAV Application

Dynamic binding
- bind viewer to distributor that will provide best service to viewer

Global Scheduling
- required across distributed system
- schedule tasks and streams
- load shedding to avoid overload

Images courtesy of BBN
Future Directions

- End-to-end scheduling
 - Scheduling nested requests
 - Load shedding with dependencies
- Algorithm development
 - Dynamic priority adjustment
 - Dynamic priority mapping
- Meta-service refinement
 - Continue work on architecture
 - Algorithms for QoS trade-off
Contact Information

homepage.cs.uri.edu/research/rtsorac/

Lisa DiPippo - dipippo@cs.uri.edu
Vic Fay-Wolfe - wolfe@cs.uri.edu