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Speaker Introduction

! Member of the Test & Training Enabling Architecture 
(TENA ) Architecture Management Team (AMT)

! Project Lead for one of the FI2010 Test Cases

! Development member on FI2010 Test Team
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Presentation Goals

! Briefly describe the TENA middleware

! Discuss results of performance testing

! Enumerate benefits of using the TENA middleware
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What is TENA?

! Means “Test & Training Enabling Architecture”

! Defines a common architecture for the test and 
training range community

! Provides a common software framework called the 
TENA middleware

! Uses the concept of a Logical Range - “a suite of 
TENA resources, sharing a common object model, 
that work together for a given range event”

! Defines a meta-model for the definition of Logical 
Range Object Models (LROMs)
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What is TENA? (Continued)

! Will eventually define common tools, concept of 
operations, and standard object models to facilitate 
multi-range exercises
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Stateful Distributed Object (SDO)

! SDO classes specified using the TENA Definition 
Language (TDL)

! Based on the OMG’s Interface Definition Language (IDL) but 
with extensions to support the SDO concept

! The creator and maintainer (i.e. the “owner”) of an 
SDO instance is called a servant.

! There is only one servant for any particular SDO instance

! The remote instance of the SDO is called a proxy.
! There can be one or more proxies for any SDO servant
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Stateful Distributed Objects 
(Continued)

! Provides remotely-invocable methods
! Implemented by servant in the server application
! Invoked in client application by using proxy

! Provides publication state
! Attributes automatically disseminated to all client 

applications that subscribe to a particular SDO
! Can be considered a form of distributed shared memory

! Support inheritance and composition
! can extend (“inherit from”) another SDO class
! can contain (or be contained in) another SDO class
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Test Case Description

! Used Release 3.0 of the TENA middleware

! Developed Test Case Matrix which
! published at the various levels of class inheritance
! subscribed at the full published class level or at some 

base-class level

! Each test case varied publication state update rate 
and number of published SDO instances

! at 1 Hz varied the published SDO instances from 1 - 256
! at 10 Hz varied the published SDO instances from 1 - 64
! at 100 Hz published only one SDO instance

! Compared TENA Middleware performance verses 
that of TAO Real-Time Event Service
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TENA Object Model
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Test Case Matrix

Test 
Case

Test
ID

Aircraft
SDO
Publisher

Dynamic
Object
SDO
Publisher

Static
Object
SDO
Publisher

Aircraft
SDO
Subscriber

Dynamic 
Object
SDO 
Subscriber

Static 
Object
SDO 
Subscriber

1 A-SO X X

2 A-DO X X

3 A-A X X

4 DO-SO X X

5 DO-DO X X

6 SO-SO X X
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Computer System Characteristic System 1
Name localhost
System Manufacturer IBM PC compatible
System Model n/a
CPU Type 1000MHz
Number of CPUs 2
CPU Cache 16K L1, 256K L2
RAM 512 MB
RAM Speed unknown
System Bus Speed 133MHz FSB
Network Interface Type (ATM,
Ethernet, Scramnet, etc.)

Ethernet

NIC Speed (Bits/s) 100 MB
NIC Manufacturer 3Com
NIC Model/Type 3c905C-TX
Operating System Linux (RedHat 7.1)
OS Version/Release Linux 2.4.2-2smp

(SMP kernel)

Test Platform Description
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TENA Object Model
SDO Publication State Packet Sizes

1272 bytesAircraft

1104 bytesDynamicObject

748 bytesStaticObject

Packet SizeSDO
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#include <TENA/IKE2/IKE2.h>
#include "TP_Task.h"

int main(int argc, char * argv[] )
{

...

TENA::Middleware::Configuration config( argc, argv );

TENA::Middleware::RuntimePtr pRuntime = TENA::Middleware::init( config );

TENA::Middleware::ExecutionPtr pExecution = pRuntime->joinExecution( executionName );
...

for (int i=0; i<(numberInstances+perThread-1)/perThread; i++)
{

TP_Task *updaterThread = new TP_Task(
pExecution, sessionName,
(commTypeStr == "BestEffort") ? 1 : 0, theDuration, i*perThread,
(i*perThread+(perThread-1) < numberInstances) ? i*perThread+(perThread-1)

: numberInstances-1 );
if (updaterThread != NULL) 

updaterThread->activate( THR_NEW_LWP, 1, 0, ACE_DEFAULT_THREAD_PRIORITY );
}

...
return 0;

}

Publisher Example Source-Code
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#include <time.h>
#include <map>
#include <memory>

#include "ace/Task.h"
#include "tao/corba.h"

#include <TENA/IKE2/IKE2.h>
#include <OMstd/StaticObject/StaticObjectPublisher.h>
#include "StaticObjectRemoteServantMethodsFactoryImpl.h"
#include <strstream>

#include "Timer.h"

class TP_Task : virtual public ACE_Task_Base
{
private:

TENA::Middleware::SessionPtr                                pSession_;
std::auto_ptr< OMstd::StaticObject::ServantFactory_t > servantFactory_;
unsigned long long                                          duration_;
int done_;
int                                                         startInstance_;
int                                                         endInstance_;
std::map< std::string, OMstd::StaticObject::ServantPtr >  objectMap_;

public:

Publisher Example Source-Code 
(Continued)
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Publisher Example Source-Code 
(Continued)

TP_Task(TENA::Middleware::ExecutionPtr pExecution, std::string sessionName, int commType,
unsigned long long duration, int startInstance, int endInstance) :

duration_(duration), done_(0),
startInstance_(startInstance), endInstance_(endInstance)

{
pSession_ = pExecution->createSession( sessionName );

OMstd::StaticObject::RemoteServantMethodsFactoryPtr
pDefaultStaticObjectRemoteServantMethodsFactory(

new OMimpl::StaticObject::StaticObjectRemoteServantMethodsFactoryImpl() );

servantFactory_ =
IKE2::publish< OMstd::StaticObject::ServantTraits >(

pSession_,
pDefaultStaticObjectRemoteServantMethodsFactory );

for (int i=startInstance; i <= endInstance_; i++)
{

std::ostrstream ostr;
ostr << "SlamDunk" << i << ends;

objectMap_[ostr.str( )] = servantFactory_->createServantUsingDefaultFactory(
(commType == 1) ? TENA::Middleware::BestEffort : TENA::Middleware::Reliable );

std::auto_ptr< OMstd::StaticObject::PublicationStateUpdater > pUpdater(
objectMap_[ostr.str( )]->createPublicationStateUpdater() );
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Publisher Example Source-Code 
(Continued)

OMstd::Range::Time  timestamp;

pUpdater->setName( ostr.str( ) );

ACE_Time_Value tv = Timer::updateTime( );
timestamp.seconds( tv.sec() );
timestamp.nanoseconds( tv.usec() );
pUpdater->setTimestamp( timestamp );

objectMap_[ostr.str( )]->modifyPublicationState( pUpdater );
}

}
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Publisher Example Source-Code 
(Continued)

virtual int svc() 
{

struct timespec tm;
::ACE_hrtime_t shrtime, ehrtime, nhrtime;
unsigned long long deltaTime;

for (;done_ == 0;)
{

shrtime = ACE_OS::gethrtime( );
for (int i=startInstance_; i <= endInstance_; i++)

{
std::ostrstream ostr;
ostr << "SlamDunk" << i << ends;

std::auto_ptr< OMstd::StaticObject::PublicationStateUpdater > pUpdater(
objectMap_[ostr.str( )]->createPublicationStateUpdater() );

OMstd::Range::Time  timestamp;

pUpdater->setName( ostr.str( ) );

ACE_Time_Value tv = Timer::updateTime( );
timestamp.seconds( tv.sec() );
timestamp.nanoseconds( tv.usec() );
pUpdater->setTimestamp( timestamp );

objectMap_[ostr.str( )]->modifyPublicationState( pUpdater );
}
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Publisher Example Source-Code 
(Continued)

if (duration_ < 10000000)
{

nhrtime = shrtime + duration_;
do {
ehrtime = ACE_OS::gethrtime( );   

} while (ehrtime < nhrtime);
}
else
{

nhrtime = ACE_OS::gethrtime( );
deltaTime = nhrtime - shrtime;
if (deltaTime > duration_) continue;
deltaTime = duration_ - deltaTime;
tm.tv_sec  = deltaTime / 1000000000UL;
tm.tv_nsec = deltaTime - tm.tv_sec * 1000000000UL;
ACE_OS::nanosleep( &tm, NULL );

}

}

return 0;
}

};



Conclusion
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Benefits of The TENA Middleware

! Abstracts the real-world domain into objects
! Promotes object-oriented analysis, design and 

programming practices

! Programmer does not have to deal with the low-level 
socket API

! TENA Middleware (via TAO CORBA ORB) manages the 
connections

! Programmer can specify type of connection per published 
object - reliable (TCP/IP) or best-effort (multicast UDP)

! Increases programmer productivity and reduces 
errors

! TENA uses UML-based model-driven automated code 
generation

! TENA API provides compile-time type-safety
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Benefits of The TENA Middleware
(Continued)

! Implements a publish/subscribe communication 
paradigm

! Similar to HLA (High Level Architecture)

! Implements remote method invocation
! Similar to CORBA

! Promotes fault tolerant software systems
! Publishers and subscribers can exit exercise at any time 

without effecting each other

! Middleware distributions for UNIX (Linux/Solaris) 
and Windows (NT/2000/XP) platforms

! IRIX and VxWorks distributions possible in near future
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Questions or Comments?

! Phone: (850) 682-1184

! E-Mail: gregory.schultz@warpcomputing.com or            
gregory.schultz@cox.net


