
OMG’s Workshop on Distributed Object Computing
for Real-Time and Embedded Systems

July 14-17, 2003 - Arlington, VA

Gregory L. Schultz

Performance Testing of the
TENA Middleware

2

Speaker Introduction

! Member of the Test & Training Enabling Architecture
(TENA) Architecture Management Team (AMT)

! Project Lead for one of the FI2010 Test Cases

! Development member on FI2010 Test Team

3

Presentation Goals

! Briefly describe the TENA middleware

! Discuss results of performance testing

! Enumerate benefits of using the TENA middleware

4

What is TENA?

! Means “Test & Training Enabling Architecture”

! Defines a common architecture for the test and
training range community

! Provides a common software framework called the
TENA middleware

! Uses the concept of a Logical Range - “a suite of
TENA resources, sharing a common object model,
that work together for a given range event”

! Defines a meta-model for the definition of Logical
Range Object Models (LROMs)

5

What is TENA? (Continued)

! Will eventually define common tools, concept of
operations, and standard object models to facilitate
multi-range exercises

6

Stateful Distributed Object (SDO)

! SDO classes specified using the TENA Definition
Language (TDL)

! Based on the OMG’s Interface Definition Language (IDL) but
with extensions to support the SDO concept

! The creator and maintainer (i.e. the “owner”) of an
SDO instance is called a servant.

! There is only one servant for any particular SDO instance

! The remote instance of the SDO is called a proxy.
! There can be one or more proxies for any SDO servant

7

Stateful Distributed Objects
(Continued)

! Provides remotely-invocable methods
! Implemented by servant in the server application
! Invoked in client application by using proxy

! Provides publication state
! Attributes automatically disseminated to all client

applications that subscribe to a particular SDO
! Can be considered a form of distributed shared memory

! Support inheritance and composition
! can extend (“inherit from”) another SDO class
! can contain (or be contained in) another SDO class

8

Test Case Description

! Used Release 3.0 of the TENA middleware

! Developed Test Case Matrix which
! published at the various levels of class inheritance
! subscribed at the full published class level or at some

base-class level

! Each test case varied publication state update rate
and number of published SDO instances

! at 1 Hz varied the published SDO instances from 1 - 256
! at 10 Hz varied the published SDO instances from 1 - 64
! at 100 Hz published only one SDO instance

! Compared TENA Middleware performance verses
that of TAO Real-Time Event Service

9

TENA Object Model

10

Test Case Matrix

Test
Case

Test
ID

Aircraft
SDO
Publisher

Dynamic
Object
SDO
Publisher

Static
Object
SDO
Publisher

Aircraft
SDO
Subscriber

Dynamic
Object
SDO
Subscriber

Static
Object
SDO
Subscriber

1 A-SO X X

2 A-DO X X

3 A-A X X

4 DO-SO X X

5 DO-DO X X

6 SO-SO X X

11

Computer System Characteristic System 1
Name localhost
System Manufacturer IBM PC compatible
System Model n/a
CPU Type 1000MHz
Number of CPUs 2
CPU Cache 16K L1, 256K L2
RAM 512 MB
RAM Speed unknown
System Bus Speed 133MHz FSB
Network Interface Type (ATM,
Ethernet, Scramnet, etc.)

Ethernet

NIC Speed (Bits/s) 100 MB
NIC Manufacturer 3Com
NIC Model/Type 3c905C-TX
Operating System Linux (RedHat 7.1)
OS Version/Release Linux 2.4.2-2smp

(SMP kernel)

Test Platform Description

12

13

14

15

16

17

TENA Object Model
SDO Publication State Packet Sizes

1272 bytesAircraft

1104 bytesDynamicObject

748 bytesStaticObject

Packet SizeSDO

18

19

20

21

#include <TENA/IKE2/IKE2.h>
#include "TP_Task.h"

int main(int argc, char * argv[])
{

...

TENA::Middleware::Configuration config(argc, argv);

TENA::Middleware::RuntimePtr pRuntime = TENA::Middleware::init(config);

TENA::Middleware::ExecutionPtr pExecution = pRuntime->joinExecution(executionName);
...

for (int i=0; i<(numberInstances+perThread-1)/perThread; i++)
{

TP_Task *updaterThread = new TP_Task(
pExecution, sessionName,
(commTypeStr == "BestEffort") ? 1 : 0, theDuration, i*perThread,
(i*perThread+(perThread-1) < numberInstances) ? i*perThread+(perThread-1)

: numberInstances-1);
if (updaterThread != NULL)

updaterThread->activate(THR_NEW_LWP, 1, 0, ACE_DEFAULT_THREAD_PRIORITY);
}

...
return 0;

}

Publisher Example Source-Code

22

#include <time.h>
#include <map>
#include <memory>

#include "ace/Task.h"
#include "tao/corba.h"

#include <TENA/IKE2/IKE2.h>
#include <OMstd/StaticObject/StaticObjectPublisher.h>
#include "StaticObjectRemoteServantMethodsFactoryImpl.h"
#include <strstream>

#include "Timer.h"

class TP_Task : virtual public ACE_Task_Base
{
private:

TENA::Middleware::SessionPtr pSession_;
std::auto_ptr< OMstd::StaticObject::ServantFactory_t > servantFactory_;
unsigned long long duration_;
int done_;
int startInstance_;
int endInstance_;
std::map< std::string, OMstd::StaticObject::ServantPtr > objectMap_;

public:

Publisher Example Source-Code
(Continued)

23

Publisher Example Source-Code
(Continued)

TP_Task(TENA::Middleware::ExecutionPtr pExecution, std::string sessionName, int commType,
unsigned long long duration, int startInstance, int endInstance) :

duration_(duration), done_(0),
startInstance_(startInstance), endInstance_(endInstance)

{
pSession_ = pExecution->createSession(sessionName);

OMstd::StaticObject::RemoteServantMethodsFactoryPtr
pDefaultStaticObjectRemoteServantMethodsFactory(

new OMimpl::StaticObject::StaticObjectRemoteServantMethodsFactoryImpl());

servantFactory_ =
IKE2::publish< OMstd::StaticObject::ServantTraits >(

pSession_,
pDefaultStaticObjectRemoteServantMethodsFactory);

for (int i=startInstance; i <= endInstance_; i++)
{

std::ostrstream ostr;
ostr << "SlamDunk" << i << ends;

objectMap_[ostr.str()] = servantFactory_->createServantUsingDefaultFactory(
(commType == 1) ? TENA::Middleware::BestEffort : TENA::Middleware::Reliable);

std::auto_ptr< OMstd::StaticObject::PublicationStateUpdater > pUpdater(
objectMap_[ostr.str()]->createPublicationStateUpdater());

24

Publisher Example Source-Code
(Continued)

OMstd::Range::Time timestamp;

pUpdater->setName(ostr.str());

ACE_Time_Value tv = Timer::updateTime();
timestamp.seconds(tv.sec());
timestamp.nanoseconds(tv.usec());
pUpdater->setTimestamp(timestamp);

objectMap_[ostr.str()]->modifyPublicationState(pUpdater);
}

}

25

Publisher Example Source-Code
(Continued)

virtual int svc()
{

struct timespec tm;
::ACE_hrtime_t shrtime, ehrtime, nhrtime;
unsigned long long deltaTime;

for (;done_ == 0;)
{

shrtime = ACE_OS::gethrtime();
for (int i=startInstance_; i <= endInstance_; i++)

{
std::ostrstream ostr;
ostr << "SlamDunk" << i << ends;

std::auto_ptr< OMstd::StaticObject::PublicationStateUpdater > pUpdater(
objectMap_[ostr.str()]->createPublicationStateUpdater());

OMstd::Range::Time timestamp;

pUpdater->setName(ostr.str());

ACE_Time_Value tv = Timer::updateTime();
timestamp.seconds(tv.sec());
timestamp.nanoseconds(tv.usec());
pUpdater->setTimestamp(timestamp);

objectMap_[ostr.str()]->modifyPublicationState(pUpdater);
}

26

Publisher Example Source-Code
(Continued)

if (duration_ < 10000000)
{

nhrtime = shrtime + duration_;
do {
ehrtime = ACE_OS::gethrtime();

} while (ehrtime < nhrtime);
}
else
{

nhrtime = ACE_OS::gethrtime();
deltaTime = nhrtime - shrtime;
if (deltaTime > duration_) continue;
deltaTime = duration_ - deltaTime;
tm.tv_sec = deltaTime / 1000000000UL;
tm.tv_nsec = deltaTime - tm.tv_sec * 1000000000UL;
ACE_OS::nanosleep(&tm, NULL);

}

}

return 0;
}

};

Conclusion

28

Benefits of The TENA Middleware

! Abstracts the real-world domain into objects
! Promotes object-oriented analysis, design and

programming practices

! Programmer does not have to deal with the low-level
socket API

! TENA Middleware (via TAO CORBA ORB) manages the
connections

! Programmer can specify type of connection per published
object - reliable (TCP/IP) or best-effort (multicast UDP)

! Increases programmer productivity and reduces
errors

! TENA uses UML-based model-driven automated code
generation

! TENA API provides compile-time type-safety

29

Benefits of The TENA Middleware
(Continued)

! Implements a publish/subscribe communication
paradigm

! Similar to HLA (High Level Architecture)

! Implements remote method invocation
! Similar to CORBA

! Promotes fault tolerant software systems
! Publishers and subscribers can exit exercise at any time

without effecting each other

! Middleware distributions for UNIX (Linux/Solaris)
and Windows (NT/2000/XP) platforms

! IRIX and VxWorks distributions possible in near future

30

Questions or Comments?

! Phone: (850) 682-1184

! E-Mail: gregory.schultz@warpcomputing.com or
gregory.schultz@cox.net

