OMG’s Workshop on Distributed Object Computing
for Real-Time and Embedded Systems

July 14-17, 2003 - Arlington, VA

Performance Testing of the
TENA Middleware

Gregory L. Schultz

Speaker Introduction

e Member of the Test & Training Enabling Architecture
(TENA) Architecture Management Team (AMT)

e Project Lead for one of the FI2010 Test Cases

e Development member on FI2010 Test Team

Presentation Goals

e Briefly describe the TENA middleware
e Discuss results of performance testing

e Enumerate benefits of using the TENA middleware

What is TENA?

e Means “Test & Training Enabling Architecture”

e Deflnes a common architecture for the test and
training range community

e Provides a common software framework called the
TENA middleware

e Uses the concept of a Logical Range - “a suite of
TENA resources, sharing a common object model,
that work together for a given range event”

e Defines a meta-model for the definition of Logical
Range Object Models (LROMSs)

What is TENA? (Continued)

e Will eventually define common tools, concept of
operations, and standard object models to facilitate
multi-range exercises

Stateful Distributed Object (SDO)

e SDO classes specified using the TENA Definition
Language (TDL)

e Based on the OMG’s Interface Definition Language (IDL) but
with extensions to support the SDO concept

e The creator and maintainer (i.e. the “owner”) of an
SDO instance is called a servant.

e There is only one servant for any particular SDO instance

e The remote instance of the SDO is called a proxy.
e There can be one or more proxies for any SDO servant

Stateful Distributed Objects
(Continued)

e Provides remotely-invocable methods
e Implemented by servant in the server application
e Invoked in client application by using proxy

e Provides publication state

e Attributes automatically disseminated to all client
applications that subscribe to a particular SDO

e Can be considered a form of distributed shared memory

e Support inheritance and composition
e can extend (“inherit from”) another SDO class
e can contain (or be contained in) another SDO class

Test Case Description

e Used Release 3.0 of the TENA middleware

e Developed Test Case Matrix which
e published at the various levels of class inheritance

e subscribed at the full published class level or at some
base-class level

e Each test case varied publication state update rate
and number of published SDO instances
e at 1 Hz varied the published SDO instances from 1 - 256
e at 10 Hz varied the published SDO instances from 1 - 64
e at 100 Hz published only one SDO instance

e Compared TENA Middleware performance verses
that of TAO Real-Time Event Service

TENA Object Model

TENA Objact Maodel

astructs
Range::Time 1
+seconds @ unsigned kenglidl)

StaticObject

Fname ; stringdidl)
FentityMumber - unsigned kong(idl)
F=guality : unsigned shor{idl)

+nanoseconds ¢ unsignad long(idl) i me

wstructs
DIS::Entity Ty pe
+kind © octet(idl)
+domain - octet(idl)
+oountry © unsigned short(idl)

AN

+cateqory - octet(idl)
+subcategory @ octet(idl)
+specific | octet(idl)
+extra - octet(id])

+antity Type

CulturalFeature
Heatureld - unsigned keng(idl))

+attitude

DynamicObject

TSPIl::Acceleration

+accelaration

+isSimulated : boolean(id)
+deadReckoningAlgorithm : octet(idl)
+trackSourcelist : SDO:ID

o1

Hkind - unsigned short(idl)
Funits - unsigned shaort(idl)
+T1 - doublafidl)
T2 - doublalidl)

wstructs
+paosition TSPI::Position
Fkind : unsigned shortfidl)
Funits - unsigned short(idl)
=T1 : doubladidl)
T2 - daublalid])
#T3 - doublae(idl)
usiructs #T4 - doublefidl)
TSPI::Orientation =TS - double(idl)
+kind © unsigned short(idl) =TE - doubla(idl)
+units : unsigned shaort(idl) =TT - doublalidl)
+T1 : double(idl) #TE - doublalidl)
+ T2 : double(idl)
+T3 double(idl)
+T4 : doublefidl)
+yalocity wstructs
TSPi::Velocity
+kird : unsigned short(idl}
astructs +units : unsigned short(idl))

+T1 : dauble{idl)
+T2 : doubledidl)
+T3 : double(idl)

sstructs
TSPl AngularVelocity

+kird @ unsigned short(idl}
+units : unsigned short(idl}

+ailMumber © unsigned long(idl) >

+mnunitionList : SDO=:ID

+munitionList - SDO-ID

1
wsructs asiructs aglructs
Squawk ModeC i IFF

+oode : unsigned short{idl)
+valid - boolean(idl)
+garbled : boclean(idl)

+altitude - float(idl)
+valid : boolean(idl))
+Hive @ boolean(idl)

+mode? © Squawk
+modedA, | Squawk
+miodeC : ModaeC

+smoothed - boolean(idl)

+armed - boolean(idl)
+releasad | booleanidl)
+owner - SOOI
+target : SDOCID
+stationld : string{idl)

+hullMumber . unsigned longiidl)
+inunitionList @ SDOID

ranoiae]) 04: 4T3 - double(idl)
wstructs F] AN I : Yot
+angular_wel
= hpzllcaﬂorftms +theApplicationStatus : ApplicationStatus o - ty
imeStamp | Range: Time - —— . idl
=applD ung|g[.19d Iong{ldl_] +getStatusUpdate() : ApplicationStatus :E : gxg::{{:gli
-n_;toupID : un5|_gned Iongljl_dl",l T T3 doublefidl)
+instance : unsigned longyidi) ITSPI::AngularAcceleration
FisPrimary : booleaniidl -
name - gring(idl] e +angular_acceleration +Ic|n_|:! E unslgnad Shﬂﬂti_ﬂl}
+status @ unsigned long(idl) +units unmgped shaort(idl}
HnumObjectsSenved @ unsigned long(idly +T1 : douhlai!d]
+numProxies @ unsigned long(idl) +;:25 : gauge%s H
+T3 : double
Adrcraft GroundVehicle Munition SurfaceVessal

SubmersiblaVessel

+huliMumber : unsigned long(idl)
+imunitionList @ SDO:D

Test Case Matrix

Test Aircraft Dynamic Static Aircraft Dynamic Static
Test D SDO Object Object SDO Object Object
Case Publisher SDO SDO Subscriber SDO SDO
Publisher Publisher Subscriber Subscriber

1 A-SO X X

2 A-DO X X

3 A-A X X

4 DO-SO X X

5 DO-DO X X

6 SO-SO X X

10

Test Platform Description

Computer System Characteristic

System 1

Name

localhost

System M anufacturer

IBM PC compatible

System M odel n/a

CPU Type 1000M Hz
Number of CPUs 2

CPU Cache 16K L1, 256K L2
RAM 512 MB
RAM Speed unknown
System Bus Speed 133MHz FSB
Network Interface Type (ATM, Ethernet
Ethernet, Scramnet, etc.)

NIC Speed (Bits/s) 100 M B

NIC Manufacturer 3Com

NIC Model/Type 3c905C-T X

Operating System

Linux (RedHat 7.1)

OS Version/Release

Linux 2.4.2-2smp
(SMP kernel)

11

Overall 1Hz - Average Latency
Non-Distributed Execution

5000

4500
4000

3A00
S —— 3-3
A000
—=—3z-do
£ a-s0
Al
——do-do

——do-50

T
o
@
-
ot
£
2
®
4

A
—4— 50-50

1500

1000

f00

20

Number of SD0 Instances

=3
a
"
=
=
=
ks
o
=
=
iz}
=
=
i}
-
W

1000

]

J00

kU0

f00

400

FARLE

100

Overall 1Hz Statistics - Standard Deviation
Non-Distributed Execution

Number of SD0 Instances

——3-3
—=—a-do
50
—— do-do
——do-50

—#— 50-50

kOO0

a000

4000

T
o
@
-
ot
£
2
®
4

A0
ra

1000

Overall 10Hz - Average Latency
Non-Distributed Execution

Number of SD0 Instances

——3-3
—=—a-do
50
—— do-do
——do-50

—#— 50-50

=3
a
"
=
=
=
ks
o
=
=
iz}
=
=
i}
-
W

4000

3500

20
!

1500

1000

f00

Overall 10Hz - Standard Deviation
Non-Distributed Execution

Number of SD0 Instances

——3-3
—=—a-do
50
—— do-do
——do-50

—#— 50-50

Overall Comparison - 1 SDO
Non-Distributed-Execution

1100

1050

1000

950

=]
—— 1 Hz

—s—10Hz
100 Hz

T
o
@
-
ot
£
2
®
4

740

700

Sl

kOO

Ij 0-50 Ij 0- Ij 0

Test Case

TENA Object Model

SDO Publication State Packet Sizes

SDO Packet Size
StaticObject 748 bytes
DynamicObject 1104 bytes

Aircraft

1272 bytes

17

TENA Middleware vs RT Event Service Performance
(StaticObject SDOI748 bytes)

o4l
2l
a0
{all
780

740

T
@
@
-

Tt
3
2
®

-

720
700
ka0
B0
G40

10 Hz 100 Hz
Transmit Rate (Hz)

T
@
@
-

Tt
3
2
®

-

960

940

920

500

wall

40

820
[RFaR

7al

760

740

TENA Middleware vs RT Event Service Performance
(DynamicObject SDOM 104 bytes)

10 Hz
Transmit Rate (Hz)

100 Hz

TENA Middleware vs RT Event Service Performance
(Aircraft SDOM272 bytes)

1200

1000

GO0

T
@
@
-

Tt
3
2
®

-

10 Hz 100 Hz
Transmit Rate (Hz)

Publisher Example Source-Code

#i ncl ude <TENA/ | KE2/ | KE2. h>
#i ncl ude "TP_Task. h"

int main(int argc, char * argv[])

{

TENA: : M ddl ewar e: : Configuration config(argc, argv);
TENA: : M ddl eware: : Runti mePtr pRuntine = TENA:: M ddleware::init(config);

TENA: : M ddl ewar e: : Executi onPtr pExecution = pRuntinme->joi nExecuti on(executi onNane);

for (int i=0; i<(nunberlnstances+perThread-1)/perThread; i ++)

{
TP_Task *updater Thread = new TP_Task(

pExecuti on, sessi onNane,
(commlypeStr == "BestEffort") ? 1 : 0, theDuration, i*perThread,
(i *per Thr ead+(per Thread-1) < nunberlnstances) ? i*per Thread+(per Thread-1)

nunber | nst ances-1);
if (updaterThread != NULL)

updat er Thr ead- >activate(THR_NEWLWP, 1, 0, ACE DEFAULT _THREAD PRIORITY);
}

return O;

1

21

Publisher Example Source-Code
(Continued)

#i nclude <tinme. h>
#i ncl ude <map>
#i ncl ude <menory>

#i ncl ude "ace/ Task. h"
#i ncl ude "t ao/ corba. h"

#i ncl ude <TENA/ | KE2/ | KE2. h>

#i ncl ude <Ovstd/ StaticCObject/ StaticObjectPublisher. h>

#i ncl ude "Stati cQoj ect Renot eSer vant Met hodsFact oryl npl . h"
#i ncl ude <strstreanp

#i nclude "Tinmer.h"

class TP _Task : virtual public ACE Task Base

{

private:
TENA: : M ddl ewar e: : Sessi onPtr pSessi on_;
std::auto_ptr< Ovstd:: StaticObject:: Servant Factory_ t > servant Factory_;
unsi gned | ong | ong duration_;
i nt done_;
i nt startlnstance_;
i nt endl nst ance_;

std::map< std::string, Owstd:: StaticCObject::ServantPtr > obj ect Map_;

publi c:

Publisher Example Source-Code
(Continued)

TP_Task(TENA: : M ddl ewar e: : Executi onPtr pExecution, std::string sessionNanme, int commlype,
unsigned long long duration, int startlnstance, int endlnstance)
duration_(duration), done_(0),
startlnstance (startlnstance), endlnstance_(endl nstance)

pSessi on_ = pExecution->creat eSessi on(sessi onNane);

Ovst d: : Stati cObj ect: : Renot eSer vant Met hodsFact oryPtr
pDef aul t St at i cObj ect Renpt eSer vant Met hodsFact or y(
new OM nmpl : : Stati cObj ect:: StaticObj ect Renot eSer vant Met hodsFactoryl mpl ());

servant Factory_ =
| KE2: : publ i sh< OMstd:: StaticObject::ServantTraits >(

pSessi on_,
pDef aul t St at i cQbj ect Renpt eSer vant Met hodsFactory);

for (int i=startlnstance; i <= endlnstance_; i++)

{

std::ostrstream ostr
ostr << "SlanmDunk" << i << ends;

objectMap _[ostr.str()] = servantFactory_->creat eServant Usi ngDef aul t Fact or y(
(comilype == 1) ? TENA:: M ddl eware: :BestEffort : TENA:: M ddl eware:: Reliable);

std::auto_ptr< OVstd:: StaticObject::PublicationStateUpdater > pUpdater(
obj ect Map _[ostr.str()]->createPublicationStateUpdater());

23

Publisher Example Source-Code
(Continued)

Owvst d: : Range: : Tinme tinmestanp;
pUpdat er - >set Nane(ostr.str());

ACE Tine_Value tv = Tiner::updateTinme();
ti mest anp. seconds(tv.sec());

ti mest anp. nanoseconds(tv.usec());

pUpdat er - >set Ti nestanp(tinmestanp);

objectMap_[ostr.str()]->nodifyPublicationState(pUpdater);

24

Publisher Example Source-Code
(Continued)

vi rt ual

{

struct tinespec tm
2 ACE hrtinme_t shrtinme, ehrtinme, nhrtineg;
unsi gned | ong | ong del taTi ne;

for

{

i nt svc()

(;done_ == 0;)

shrtime = ACE_OS::gethrtime();

for (int i=startlnstance_; i <= endlnstance_; i++)
{

std::ostrstreamostr;
ostr << "SlanmDunk" << i << ends;

std::auto_ptr< OWwstd:: StaticObject::PublicationStateUpdater > pUpdater(
obj ect Map_[ostr.str()]->createPublicationStateUpdater());

OMst d: : Range: : Tine timnmestanp;
pUpdat er - >set Name(ostr.str());

ACE Time_Value tv = Tiner::updateTinme();
ti mestanp. seconds(tv.sec());

ti mest anp. nanoseconds(tv.usec());

pUpdat er - >set Ti nest anp(ti nestanp);

obj ect Map_[ostr.str()]->nodi fyPublicationState(pUpdater);

25

Publisher Example Source-Code
(Continued)

Hi

}

I f (duration_ < 10000000)
{
nhrtime = shrtime + duration_;
do {
ehrtinme = ACE OS::gethrtinme();
} while (ehrtinme < nhrtinme);

}

el se
{
nhrtime = ACE_OS::gethrtine();
deltaTinme = nhrtime - shrtine;
if (deltaTinme > duration_) continue;
deltaTinme = duration_ - deltaTine;
tmtv_sec = deltaTinme / 1000000000UL;
tmtv_nsec = deltaTine - tmtv_sec * 1000000000UL;
ACE_CS: : nanosl eep(& m NULL);

}

return O;

26

Conclusion

Benefits of The TENA Middleware

e Abstracts the real-world domain into objects

e Promotes object-oriented analysis, design and
programming practices

e Programmer does not have to deal with the low-level
socket API

e TENA Middleware (via TAO CORBA ORB) manages the
connections

e Programmer can specify type of connection per published
object - reliable (TCP/IP) or best-effort (multicast UDP)

e Increases programmer productivity and reduces
errors

e TENA uses UML-based model-driven automated code
generation

e TENA API provides compile-time type-safety -

Benefits of The TENA Middleware
(Continued)

e Implements a publish/subscribe communication
paradigm
e Similar to HLA (High Level Architecture)

e Implements remote method invocation
e Similar to CORBA

e Promotes fault tolerant software systems

e Publishers and subscribers can exit exercise at any time
without effecting each other

e Middleware distributions for UNIX (Linux/Solaris)
and Windows (NT/2000/XP) platforms

e IRIX and VxWorks distributions possible in near future

29

Questions or Comments?

e Phone: (850) 682-1184

e E-Mail: gregory.schultz@warpcomputing.com or
gregory.schultz@cox.net

30

