
L sjf 1

Experience Implementing Quality
of Service for a Fault Tolerant Real

Time Event Channel

Sylvester Fernandez

Joseph Cross*
Lockheed Martin Tactical Systems

July, 2003
* Joe Cross has since taken up a new position at DARPA

L sjf 2

Military Use of Commercial Technology

Often cited goals for military systems
– Compatibility and interoperability across systems
– Reduced life-cycle costs
– Faster, easier system upgrades
– Reduced COTS refresh costs

Tactical Applications

Open Interfaces

Infrastructure

How do we get there
• Avoid point-solutions
• Use open standards
• Adopt common operating

environments

L sjf 3

Essential Tensions
COTS responds to commercial market forces, which are different

from the forces that operate in military environments

 Long Lived, typically 15 to 20 years or longer
 Needs prioritized access to resources
 Requires predictable behavior
 Evolves based on what the military needs

Not always fully specified, leaving vendors with reasons
to ‘extend’ the standard to provide needed capability

 This locks the system to proprietary products in spite of
conformance to open standards

 Commercial technology typically evolves faster than the
standards to which they conform

 Short Lived, typically 6 to 18 months
 Optimized for good average behavior
 Adaptable, converging over time to desired behavior
 Evolves based on what the customer will buy

Military
Applications

Standard
Interfaces

COTS
Infrastructure

L sjf 4

Research Focus
Problem
Standards-conforming middleware alone may not be adequate for military systems with
reliability and time-critical performance requirements

– Middleware standards only codify functional behavior
– Qualities of Service (QoS) concerns such as performance, reliability, and security are not

controlled by standards
– Vendors are free to provide different QoS while claiming conformance to standards

Application

Isolation Layer

Infrastructure

Our efforts are
focused on how
best to achieve

true infrastructure
isolation

Proposed Solution – QoS Enabled Middleware
To achieve true isolation between applications and the infrastructure, you must be

able to specify and obtain QoS in technology-neutral terms across standard
functional interfaces

• Absent this degree of isolation, systems built on “open” COTS infrastructure will continue to
exhibit the symptoms of point solutions

• Even for systems that may be able to meet its QoS requirements using current
technology, awareness of QoS requirements at the middleware interface is a
necessary design consideration for infrastructure isolation and hence the smooth
evolution of the system

L sjf 5

The Basic Approach

• Applications use standard interfaces to specify what they want done
• In addition they also specify how well it must be done, but in

technology-neutral terms
– This can be specified either at service access points, or as system-level

policy
• Middleware maps the requested service to the appropriate

resources to meet the specified QoS
– QoS can be varied based on system state

Application

M
id

d
le

w
ar

e
S

er
vi

ce Infrastructure
Resources

Technology
Neutral
Interface

QoS Requirement

L sjf 6

Additional Requirements & Constraints
• Distributed architecture – no centralized control
• No access to internals of service implementation
• No access to internals of resources
• Compatible with model-based development processes (e.g., MDA)

Application

M
id

d
le

w
ar

e
S

er
vi

ce Infrastructure
Resources

Contracts
• QoS is specified, negotiated and

obtained through ‘contracts’
• Contracts are tied to system state and

apply to service access points
• The default contract is ‘best effort’

Contract negotiations can occur at any
time for any condition

• Most negotiations are expected to
occur at initialization

• Negotiations may consume a large
amount of computing resources

Sudden changes in QoS
may be required due to
Mode change or
Equipment failure

QoS extensions will
continue to preserve

open interfaces

L sjf 7

QoS-Enabled Middleware

What needs
to be done

How well
it needs

to be done
(Policies)

QoS
Manager

Resource
Proxies

Functional
Middleware

Service

What actually
gets doneResource Chain

System
State

CommunicationsCommunications
ProcessingProcessing

Data AccessData Access
GraphicsGraphics
SecuritySecurity

Fault ToleranceFault Tolerance

Single Single
systemsystem--widewide
statestate
..
..
Distributed stateDistributed state

WorstWorst--case case
latencieslatencies
..
..
Probability Probability
Density Density
FunctionsFunctions

S
er

vi
ce

W
ra

p
p

er

L sjf 8

Resource Allocation

• A contract may be satisfied by a set of
resources

– Derived from configuration topology
– Based on ‘reachable’ nodes that match

service resource requirements pattern
– May be ordered based on optimum

search path for a given service
• Proxies speak for the resource in all

matters related to contract negotiation
– Remembers commitments already made
– Generates strategies

• Strategies specify how the resource
must be managed to achieve the
required QoS

– May be merged with other strategies in
same mode

– Listens for changes in state
• Controller

– Executes strategy
• Resources can contain other resources

Resource

C
o

n
tr

o
lle

r

P
ro

xy

Commitments

Strategies

State Change

L sjf 9

Distributed State – An Example

Hidden

High Alert

Routine Patrol

Briefing
Monitoring

Resource allocations
can vary depending on the
state of each subsystem

Local resource allocations
can be based on state
of remote subsystems

Resource requirements
can established a priori,
based on possible states

L sjf 10

The Need to Change Allocations

heavy
data
paths

heavy
computation
nodes

light
data
paths

Normal Mode Battle Mode

And: Do It Quickly

light
computation

nodes

L sjf 11

Cycles are not
permitted in the
graph

The state of a CI
is represented by
its mode.

Configuration Items

CI

CICI

CI

CI CICI

A configuration item can
contain another configuration
item.

A configuration item can be
contained in another
configuration item.

A configuration item cannot
contain itself, either directly
or indirectly.

Configuration Items are not
limited to just static entities;
they may include dynamic
components

L sjf 12

Modes and Configuration Conditions

1 2 3 4 5 6

Configuration
Item

Simple
Configuration

Condition

Modes:

Every CI has a set of modes (1 .. n),
which can be named

The current mode of a CI is one of the
possible modes that it can be in

Clients can register to receive
notification of mode changes
by specifying:

• A pre-condition
• A post-condition
• A notification point

Pre and post-conditions are specified
as boolean expressions on a CI’s
modes.
We refer to such conditions as simple
Configuration Conditions, e.g. (mode 1
or mode 2 or mode 4 or mode 6).

L sjf 13

Configuration Conditions and Contracts

Contract

Boolean expressions
whose terms are
Configuration Conditions:
(CC1 and CC2 or CC3 and
not CC4).

Can be established
during initialization

Evaluated when
notification events occur

Determines which
contract is selected

Default contract is
“best effort”

S
er

vi
ce

Configuration
Condition

For example, the FLIR is Online
and Primary LAN is Operational

L sjf 14

Contract Specification Examples

<ec_id id="Tracking_Service">
<contract>

<mode>battle</mode>
<latency_ms>100</latency_ms>
<reliability>0.99</reliability>
<msg_size_bits>1000</msg_size_bits>
<arrival_rate_mps>5</arrival_rate_mps>
<clients>

<location>
<id>Trident</id>
<kind>hostname</kind>

</location>
<client_type>Supplier</client_type>
<location>

<id>Viking</id>
<kind>hostname</kind>

</location>
<client_type>Consumer</client_type>
<location>

<id>Excalibur</id>
<kind>hostname</kind>

</location>
<client_type>Consumer</client_type>

</clients>
</contract>

</ec_id>

<proposal>
<mode>

<or>
<ci name=“radioVHF” state=“onLine”/>
<ci name=“radioUHF” state=“onLine”/>

</or>
</mode>
<QoS type=“latency”>

<upperPoint secs=“1.0” prob=“0.99”/>
<upperPoint secs=“4.0” prob=“0.9999”/>

</QoS>
<load type=“interMessageTime”>

<upperPoint secs=“1.0” prob=“0.0001”/>
<lowerPoint secs=“1.0” prob=“0.9999”/>

</load>
<load type=“messageSize”>

<upperPoint secs=“256” prob=“1.0”/>
<upperPoint secs=“32” prob=“0.5”/>

</load>
<load type=“priority”>

<urgency val=“10”/>
<importance val=“2”/>

</load>
</proposal>

Using Worst Case Values Using Density Intervals

L sjf 15

Fault Tolerant Real Time Event Channel

• Provides configurable robustness of
event streams in the face of fail-stop
faults, within real-time constraints

• Offers useful configuration knobs to
Quality Connectors

– Replicas: where and how many
– Transactional replication depths

for event subscriptions

Primary
Event

Channel

Replication
Manager

Consumer

Consumer

Consumer

Supplier

Supplier

• Tunable transaction depth used during a
subscription

• Trades RT blocking time for FT assurance of
replication

• One-way “soft replication” past assured
transaction depth

• Event-Channel provides a messaging Façade
• Hides multiplicity of replicas and interfaces
• Reduces complexity of object references

Fault
Notifier

Fault
Detector

Naming Service

push

push

push

push

push

subscribe

re
p

lic
at

e

IOGR

L sjf 16

Quality Connector (QC)
• Initial Implementation

– Develops replication strategies that satisfy latency and
reliability for

• Event Channels
• Replication Manager (RM)
• Fault Notifier (FN)
• Fault Detector (FD)

– Assumes single fault tolerance domain, with one logical RM,
FN and global FD per domain

– One contract per event channel (contracts currently not tied
to state)

– Separate IDL interfaces for
• QoS contracts
• Configuration Information (processors and connections may

only be removed)
• Replication strategies (location of components, with

placeholder for configuration options)
– Contracts and configuration can also be input from XML files

L sjf 17

Fault Tolerant Quality Connector

Locator

Replication
Strategy

Configuration

Configuration
InformationContracts

Utilities DENT ManipulatorLoad Comparator

Connection Processor

Node

Path

Configuration Database

1..*

L sjf 18

QC Implementation Details
• Contracts contain

– Requested worst case latency from any supplier to all consumers on
an EC

• Measured from the time the event is pushed to the time the last
consumer’s push() is invoked

– Requested worst case reliability, specified as the probability that a
message will arrive at all its destinations within its latency bound

– Message size (initially fixed)
– Arrival rate (initially periodic)
– Client mapping showing location of each consumer and supplier on

the EC
• Configuration information

– Consists of topological configuration of the system in terms of
processing nodes and connections between them

– Each processor and connection has the following attributes:
• Incurred latency specified as a Density Interval (DENT)
• Availability, specified as the probability that a processor or connection is

available for use (note that messages that arrive late are considered
failures for purposes of calculating reliability)

• Capacity, specified as the maximum load that the processor or connection
can handle. (The initial version assumes that connections are FIFO, and
that all available capacity can be used by the EC)

L sjf 19

MDA Investigations
• Challenge problem – Quality Enabled Services

– Develop a PIM to capture generic pattern of QoS-enabled middleware
services

– Derive model for QoS aware asynchronous messaging service (e.g.,
publish/subscribe)

– Demonstrate translation to multiple target implementations (e.g., CORBA
Event Channel, reliable multicast)

Platform-Independent
Domain Model

Platform-Specific
Models

Platform-Specific
Implementations

Generation
Deployment

Generic QoS
Provisioning

Technology Specific
Services

Not obscured by
implementation

details

Technology insertion
& change are
systematically

controlled
Open issues

• Use of UML for PIM
• Suitability of action specification languages for time-critical applications

L sjf 20

Resource Allocation

Contracts,
State,
DENTS

Service

L sjf 21

Backup

L sjf 22

Tactical Computing Trends
• Historically, tactical computing solutions have tended to point solutions

– Applications have traditionally relied on particular features of the hardware, OS
software and interconnect technologies

– It has been the only way to guarantee performance and reliability

• Such systems are expensive to build and hard to maintain
– Pervasive dependencies on proprietary hardware and software means changes are

difficult to make and to verify
– Systems built this way tended to be fragile and error-prone

• Meanwhile, rapid and dramatic evolution of commercial technology suggested
that migrating to COTS might provide significant cost and performance
improvements for military systems

• COTS Technology shows up primarily in the computing infrastructure
– Processors, operating systems, network components, communication software, etc.
– Domain specific components (sensors, weapons, etc.) continue to be custom built

• Competition in the open market caused proliferation of infrastructure options
– Interoperability and reuse were the first casualties (consider use of i960s on F-22)

• We have since come to rely on open standards to promote interoperability and
reuse across infrastructures

L sjf 23

Benefits of QoS-Enabled Middleware
• Application and infrastructure can now cycle at different rates

– Interfaces between the two are technology neutral
– Resource allocations are managed by the service provider

• Service provider now has better control over total life-cycle costs
– Obsolescence problems become more manageable

• Systems can stay current with commercial technology at much lower
technical and cost risk

• Systems no longer constrained to point solutions. We can more
easily support
– Dynamic configurations
– Distributed architectures
– Better sharing of resources, higher utilization

• When combined with program generation technology, the
middleware becomes easier to configure and use
– More fluid configurations allow for rapid changes in mission, information

flow patterns, sensor and weapons configurations – an essential
enabler for network-centric architectures

– Full life-cycle maintenance can be carried out on just the domain model
• Technology refresh is confined to the middleware and infrastructure layers
• Recertification can be done at the component level, rather than the system

level – cheaper, faster, less error-prone.

L sjf 24

Configuration Database
• Topologies: maintains ‘reachability’ information on

resource nodes
• Resource patterns: resource types needed to support

a service
• Search patterns: optimal search order through a set

of resources in order to meet needs of a specific
service

• Location: mapping of resources to other resources
• Paths: sequence of nodes that represent dependency

graphs
• Sample node attributes

– Capacity
– Availability
– Delay

L sjf 25

QoS on Event Channel

• Message Interface
– Used by application to send

or receive messages of a
given type

– Service is Publish/Subscribe
• Service Access Point (SAP)

– Hides implementation of
service using CORBA Event
Channel

– SAP is treated as a resource
to which QoS can be applied

• RT Event Channel
– Event Channel is also treated

as a resource to which QoS
can be applied

E
ve

n
t

C
h

an
n

el

S
er

vi
ce

 A
cc

es
s

P
o

in
t

S
er

vi
ce

 A
cc

es
s

P
o

in
t

M
es

sa
g

e
In

te
rf

ac
e

M
es

sa
g

e
In

te
rf

ac
e

Publisher Subscriber

L sjf 26

Finite State Machine Example
A EQ 4 OR (B EQ 1 AND A EQ 2)

A = UNKNOWN

B = UNKNOWN

A != 2, A != 4

B = UNKNOWN

A = 2

B = UNKNOWN

A = 4

B = UNKNOWN

A = UNKNOWN

B = 1

A = UNKNOWN

B != 1

A = 4

B = 1

A = 4

B != 1

A = 2

B = 1

A = 2

B != 1

A != 2, A != 4

B = 1

A != 2, A != 4

B != 1

A = 4

A != 4, A != 2

A = 2

B = 1

B != 1

Accepting State

Non-accepting State

