Experience Implementing Quality
of Service for a Fault Tolerant Real
Time Event Channel

Sylvester Fernandez
Joseph Cross*
Lockheed Martin Tactical Systems
July, 2003

* Joe Cross has since taken up a new position at DARPA

Military Use of Commercial Technology

Often cited goals for military systems
— Compatibility and interoperability across systems

— Reduced life-cycle costs
— Faster, easier system upgrades
— Reduced COTS refresh costs

How do we get there

Tactical Applications

 Avoid point-solutions

« Use open standards

Open Interfaces

« Adopt common operating

Infrastructure

environments

sjf 2

Essential Tensions

COTS responds to commercial market forces, which are different
from the forces that operate in military environments

- Long Lived, typically 15 to 20 years or longer
Military | Needs prioritized access to resources

Applications |~ Requires predictable behavior

~ Evolves based on what the military needs

Not always fully specified, leaving vendors with reasons

to ‘extend’ the standard to provide needed capability

Standard ~ This locks the system to proprietary products in spite of

Interfaces conformance to open standards

- Commercial technology typically evolves faster than the
standards to which they conform

~ Short Lived, typically 6 to 18 months

COTS |~ Optimized for good average behavior
Infrastructure | - Agaptable, converging over time to desired behavior
- Evolves based on what the customer will buy

- sjf 3

Research Focus
Problem

Standards-conforming middleware alone may not be adequate for military systems with
reliability and time-critical performance requirements
— Middleware standards only codify functional behavior

— Quialities of Service (QoS) concerns such as performance, reliability, and security are not
controlled by standards

— Vendors are free to provide different QoS while claiming conformance to standards

Our efforts are Application
focused on how :
best to achieve ~ Hmmm) Isolation Layer
true infrastructure
Isolation Infrastructure

Proposed Solution — QoS Enabled Middleware
To achieve true isolation between applications and the infrastructure, you must be
able to specify and obtain QoS in technology-neutral terms across standard

functional interfaces
» Absent this degree of isolation, systems built on “open” COTS infrastructure will continue to
exhibit the symptoms of point solutions
» Even for systems that may be able to meet its QoS requirements using current
technology, awareness of QoS requirements at the middleware interface is a
necessary design consideration for infrastructure isolation and hence the smooth
evolution of the system

=

The Basic Approach

Applications use standard interfaces to specify what they want done
In addition they also specify how well it must be done, but in
technology-neutral terms

— Thli_s can be specified either at service access points, or as system-level

policy

Middleware maps the requested service to the appropriate
resources to meet the specified QoS

— QoS can be varied based on system state

Technology
Neutral
Interface

Application

Resources

- Infrastructure

Middleware

- QoS Requirement

sif 5

Additional Requirements & Constraints

» Distributed architecture — no centralized control

* No access to internals of service implementation

 No access to internals of resources

« Compatible with model-based development processes (e.g., MDA)

Sudden changes in QoS
may be required due to
Mode change or
Equipment failure

Application Infrastructure

Resources

QoS extensions will
continue to preserve
open interfaces

Middleware
Service

Contracts

« QoS is specified, negotiated and
obtained through ‘contracts’

» Contracts are tied to system state and
apply to service access points

 The default contract is ‘best effort’

Contract negotiations can occur at any
time for any condition
 Most negotiations are expected to
occur at initialization
* Negotiations may consume a large
amount of computing resources

=

QoS-Enabled Middleware

Communications What needs

Processing
Data Access
Graphics
Security

Fault Tolerance

to be done

Functional
Middleware
Service

Service

Wrapper

System

State
Single
system-wide
state

Distributed state

A 4
Resource

How well
It needs
to be done
(Policies)

Worst-case
latencies

Probability
Density
Functions

QoS
Manager

I

Proxies

!

>

Resource Chain

. What actually
gets done

sjf 7

Resource Allocation

Resource

1 !

Commitments

S Wl l

State Change

A contract may be satisfied by a set of
resources

— Derived from configuration topology

— Based on ‘reachable’ nodes that match
service resource requirements pattern

— May be ordered based on optimum
search path for a given service

Proxies speak for the resource in all
matters related to contract negotiation
— Remembers commitments already made
— Generates strategies
Strategies specify how the resource
must be managed to achieve the
required QoS

— May be merged with other strategies in
same mode

— Listens for changes in state
Controller
— EXxecutes strategy
Resources can contain other resources

sjf 8

Distributed State — An Example

Resource allocations
can vary depending on the
state of each subsystem

Local resource allocations
can be based on state
of remote subsystems

Hidden Routine Patrol

Resource requirements
can established a priori,
based on possible states

Briefing

High Alert Monitoring

sif 9

The Need to Change Allocations

Normal Mode Battle Mode

heavy
computation
nodes

paths
light-
data RN light
paths computation

nodes

And: Do It Quickly

Configuration ltems

Cycles are not
permitted in the
graph

A configuration item can
contain another configuration
item.

A configuration item can be
contained in another
configuration item.

A configuration item cannot
contain itself, either directly
or indirectly.

Configuration Items are not
limited to just static entities;
they may include dynamic
components

The state of a CI
is represented by
its mode.

sjf 11

Modes and Configuration Conditions

Configuration
ltem

Modes: | 1 2 3 4

Every Cl has a set of modes (1 .. n),
which can be named

The current mode of a Cl is one of the
possible modes that it can be in

Clients can register to receive
notification of mode changes

by specifying:

* A pre-condition
* A post-condition

Simple
Configuration
Condition

* A notification point

Pre and post-conditions are specified
as boolean expressions on a Cl's
modes.

We refer to such conditions as simple
Configuration Conditions, e.g. (mode 1
or mode 2 or mode 4 or mode 6).

sjf 12

Configuration Conditions and Contracts

| Boolean expressions
| whose terms are

Configuration Conditions:
Configuration « (CC, and CC, or CC, and
‘ Condition not éC4) ? °
““““““ Can be established

For example, the FLIR is Online

........ and Primary LAN is Operational during initialization

Evaluated when
notification events occur

-
L 4
L 4
L 4
L 4
v
L4
L4
L4
L4
L4
L4
*
L4
L 4
L4
-
4
L 4
.i
4

Determines which
contract is selected

Default contract is
“best effort”

= e

Contract Specification Examples

Using Worst Case Values

<ec_id id="Tracking_Service">
<contract>
<mode>battle</mode>
<latency_ms>100</latency_ms>
<reliability>0.99</reliability>
<msg_size bits>1000</msg_size bits>
<arrival_rate_mps>5</arrival_rate_mps>
<clients>
<location>
<id>Trident</id>
<kind>hostname</kind>
</location>
<client_type>Supplier</client_type>
<location>
<id>Viking</id>
<kind>hostname</kind>
</location>
<client_type>Consumer</client_type>
<location>
<id>Excalibur</id>
<kind>hostname</kind>
</location>
<client_type>Consumer</client_type>
</clients>
</contract>
</ec_id>

Using Density Intervals

<pr oposal >
<node>
<0r >
<ci nanme=“radi oVHF" state="onLine”’/>
<ci nanme=“radi oOUHF" state="onLine”/>
</ or >
</ node>
<QoS type="l atency” >
<upper Poi nt secs=“1.0" prob=“0.99"/>
<upper Poi nt secs=“4.0" prob="0.9999"/>
</ QS>
<| oad type="interMessageTi ne” >
<upper Poi nt secs="“1.0" prob="0.0001"/>
<| ower Poi nt secs="*1.0" prob="0.9999"/>
</| oad>
<| oad type="nessageSi ze” >
<upper Poi nt secs="256" prob=“1.0"/>
<upper Poi nt secs=“32" prob=“0.5"/>
</| oad>
<l oad type=“priority”>
<urgency val =*10"/>
<i nportance val =*2"/>
</| oad>
</ proposal >

sjf 14

Fault Tolerant Real Time Event Channel

push _
push ”| Consumer
Supplier 0
I—» Primary
> Event h
»| Channel Fr I PUSR_, | Consumer
A
. push , @
Supplier I 5 push e
subscribe = selebellaf
e
|
[I I I
Naming Service o= IOGR Replication Fay!t Fault
Manager || Notifier || Detector
« Provides configurable robustness of * Tunable transaction depth used during a
event streams in the face of fail-stop subscription _ _
faults, within real-time constraints » Trades RT blocking time for FT assurance of
» Offers useful configuration knobs to replication o
Quality Connectors * One-way “soft replication” past assured
— Replicas: where and how many transaction depth _
— Transactional replication depths * Event-Channel provides a messaging Facade
for event subscriptions « Hides multiplicity of replicas and interfaces

* Reduces complexity of object references

= i

Quality Connector (QC)

 Initial Implementation
— Develops replication strategies that satisfy latency and
reliability for
* Event Channels
* Replication Manager (RM)
« Fault Notifier (FN)
« Fault Detector (FD)

— Assumes single fault tolerance domain, with one logical RM,
FN and global FD per domain

— One contract per event channel (contracts currently not tied
to state)
— Separate IDL interfaces for
* QoS contracts

» Configuration Information (processors and connections may
only be removed)

* Replication strategies (location of components, with
placeholder for configuration options)

— Contracts and configuration can also be input from XML files

= i

Fault Tolerant Quality Connector

Configuration Database

Replication
Strategy Contracts

Processor

Configuration
Information

] Configuration

Load Comparator

Utilities

DENT Manipulator

sjf 17

QC Implementation Detalls

« Contracts contain
— Requested worst case latency from any supplier to all consumers on
an EC

* Measured from the time the event is pushed to the time the last
consumer’s push() is invoked

— Requested worst case reliability, specified as the probability that a
message will arrive at all its destinations within its latency bound

— Message size (initially fixed)

— Arrival rate (initially periodic)

— (?]IieIrE]tCmapping showing location of each consumer and supplier on
the

« Configuration information

— Consists of topological configuration of the system in terms of
processing nodes and connections between them

— Each processor and connection has the following attributes:
» Incurred latency specified as a Density Interval (DENT)

» Availability, specified as the probability that a processor or connection is
available for use (note that messages that arrive late are considered
failures for purposes of calculating reliability)

» Capacity, specified as the maximum load that the processor or connection
can handle. (The initial version assumes that connections are FIFO, and
that all available capacity can be used by the EC)

= i

MDA Investigations
 Challenge problem — Quality Enabled Services

— Develop a PIM to capture generic pattern of QoS-enabled middleware
services

— Derive model for QoS aware asynchronous messaging service (e.g.,
publish/subscribe)

— Demonstrate translation to multiple target implementations (e.g., CORBA
Event Channel, reliable multicast)

Generic QoS Technology Specific

Provisioning Services -
Lﬂ 3
Platform-Specific Platform-Specific
9 Models Implementations
Platform-Independent :>
Domain Model =

Not obscured by
implementation
details

Open issues
 Use of UML for PIM
» Suitability of action specification languages for time-critical applications

= i

Technology insertion
& change are
systematically
controlled

Generation
Deployment

QoS Enabled Middleware v1

used by
A1 o -
Service System Contracts,
Application
Policy State
a)
e 22 DENTS
: 1 established by
Service Service 1 1 R2
~" | establishes
Wrapper Access Point | .0 aced by
R4
o o5 1 R3 1
g i System State
requests oIna attached to valid in
Ri5 Service
0. | accepts 1 triggered|by
Resource 12 . R5
""" ——EEEscess-sar oo o o IS raqllined
Committment o
HE % .
. Resource Allocation 1 | submitedito
1 delegated to Bacoliree 1. provides resource info QoS
Resource = r
speaks for Re 1 Proxy ' R1D Management
tai Al
COMamns gets resource mf? from R
R4 1 1 | controls 1 | generated by i T [Becessed s
contained in RO A7 i R12
1 is controlled by genarates 1 " BCCAEEas
Resource
Availability
1 Ril e
(F:Ies?urlfe Strategy Resource
ontroller executed by axacutes Contiguration
4 trigoers

Backup

Tactical Computing Trends

« Historically, tactical computing solutions have tended to point solutions

— Applications have traditionally relied on particular features of the hardware, OS
software and interconnect technologies

— It has been the only way to guarantee performance and reliability
e Such systems are expensive to build and hard to maintain

— Pervasive dependencies on proprietary hardware and software means changes are
difficult to make and to verify

— Systems built this way tended to be fragile and error-prone
 Meanwhile, rapid and dramatic evolution of commercial technology suggested
that migrating to COTS might provide significant cost and performance
improvements for military systems
« COTS Technology shows up primarily in the computing infrastructure
— Processors, operating systems, network components, communication software, etc.
— Domain specific components (sensors, weapons, etc.) continue to be custom built
o Competition in the open market caused proliferation of infrastructure options
— Interoperability and reuse were the first casualties (consider use of i960s on F-22)

 We have since come to rely on open standards to promote interoperability and
reuse across infrastructures

= we

Benefits of QoS-Enabled Middleware

* Application and infrastructure can now cycle at different rates
— Interfaces between the two are technology neutral
— Resource allocations are managed by the service provider
» Service provider now has better control over total life-cycle costs

— Obsolescence problems become more manageable

» Systems can stay current with commercial technology at much lower
technical and cost risk

» Systems no longer constrained to point solutions. We can more
easily support
— Dynamic configurations
— Distributed architectures
— Better sharing of resources, higher utilization
 When combined with program generation technology, the
middleware becomes easier to configure and use

— More fluid configurations allow for rapid changes in mission, information
flow patterns, sensor and weapons configurations — an essential
enabler for network-centric architectures

— Full life-cycle maintenance can be carried out on just the domain model

» Technology refresh is confined to the middleware and infrastructure layers

» Recertification can be done at the component level, rather than the system
level — cheaper, faster, less error-prone.

= e

Configuration Database

Topologies: maintains ‘reachability’ information on
resource nodes

Resource patterns: resource types needed to support
a service

Search patterns: optimal search order through a set
of resources in order to meet needs of a specific
service

Location: mapping of resources to other resources
Paths: sequence of nodes that represent dependency
graphs

Sample node attributes

— Capacity

— Availability

— Delay

sjf 24

QoS on Event Channel

 Message Interface

— Used by application to send
or receive messages of a
given type

. T _ — Service is Publish/Subscribe
e % S e Service Access Point (SAP)
28| 8 S ARE: — Hides implementation of
g% S 2 [T gse service using CORBA Event

| 8 = e |1== Channel

3 i 5 — SAP is treated as a resource

to which QoS can be applied
Publisher Subscriber RT Event Channel

— Event Channel is also treated
as a resource to which QoS
can be applied

= e

Finite State Machine Example

AEQ 4 OR (B EQ 1 AND A EQ 2)

B = UNKNOWN /‘

A=2

B = UNKNOWN

A = UNKNOWN | Al=2,Al=4

B = UNKNOWN B = UNKNOWN

A = UNKNOWN
Bl=1

Non-accepting State A = UNKNOWN

Accepting State il

= e

