Carnegie Mellon

Middleware for Embedded Adaptive
Dependability (MEAD)

Real-Time Fault-Tolerant Middleware Support

Priya Narasimhan Thomas D. Bracewell
Assistant Professor of ECE and CS Senior Principal Engineer
Carnegie Mellon University Raytheon
Pittsburgh, PA 15213-3890 Sudbury, MA 01176

b

) Electrical & Computer
J ENGINEERING

Carnegie Mellon

Motivation for MEAD

m CORBA is increasingly used for applications, where dependability
and quality of service are important
N The Real-Time CORBA (RT-CORBA) standard
N The Fault-Tolerant CORBA (FT-CORBA) standard

N Neither of the two standards addresses its interaction with the other
N Either real-time support or fault-tolerant support, but not both
N Applications that need both RT and FT are left out in the cold

m Focus of MEAD

N Why real-time and fault tolerance do not make a good “marriage”

N Overcoming these issues to build support for CORBA applications that
require both real-time and fault tolerance

© 2003 Priya Narasimhan 2

MEAD: Real-Time Fault-Tolerant Middleware

Existing Technologies

m The Real-time CORBA (RT-CORBA) standard

N Scheduling of entities (threads)

N Assignment of priorities of tasks

N Management of process, storage and communication resources
N End-to-end predictability

m The Fault tolerant CORBA (FT-CORBA) standard

N Replication of entities (CORBA objects or processes)
N Management and distribution of replicas
N Logging of messages, checkpointing and recovery

N Strong replica consistency

© 2003 Priya Narasimhan

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

Requires a priori knowledge of events

No advance knowledge of when faults might
occur

Operations ordered to meet task deadlines

Operations ordered to preserve data
consistency (across replicas)

RT-Determinism = Bounded predictable
temporal behavior

FT-Determinism = Coherent state across
replicas for every input

Multithreading for concurrency and efficient
task scheduling

FT-Determinism prohibits the use of
multithreading

Use of timeouts and timer-based mechanisms

FT-Determinism prohibits the use of local
processor time

© 2003 Priya Narasimhan

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

Combining Real-Time and Fault-Tolerance

m Trade-offs between RT and FT for specific scenarios
N Effective ordering of operations to meet both RT and FT requirements
N Resolution of non-deterministic conflicts (e.g., timers, multithreading)

m Impact of fault-tolerance and real-time on each other
N Impact of faults/restarts on real-time behavior
N Replication of scheduling/resource management components

N Scheduling (and bounding) recovery to avoid missing deadlines

m For large-scale systems
N Scalable fault detection and recovery
N Considering nested (multi-tiered) middleware applications
N Tolerance to partitioning faults

© 2003 Priya Narasimhan S

MEAD: Real-Time Fault-Tolerant Middleware

Architectural Overview

m Use replication to protect
N Application objects
N Scheduler and global resource manager

m Special RT-FT scheduler
N Real-time resource-aware scheduling service

N Fault-tolerant-aware to decide when to initiate recovery

m Hierarchical resource management framework
N Local resource managers feed into a replicated global resource manager
N Global resource manager coordinates with RT-FT scheduler

m Ordering of operations

N Keeps replicas consistent in state despite faults, missed deadlines,
recovery and non-determinism in the system

© 2003 Priya Narasimhan 6

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

So, What Do We Want To Tolerate?

m Crash faults

Hardware and/or OS crashes in isolation
Process and/or Object crashes

m Communication faults

Message loss and message corruption
v Network partitioning T Fault Model
Kinds of faults that MEAD

m Malicious faults (commission/Byzantine) is designed to tolerate
X Processor/process/object maliciously subverted

m Omission faults
Missed deadline in a real-time system

m Design faults
X Correlated software/programming/design errors

© 2003 Priya Narasimhan 7

MEAD: Real-Time Fault-Tolerant Middleware

MEAD (Middleware for Embedded Adaptive Dependability)

m Our RT-FT Architecture
m Why MEAD?
m Legendary ambrosia of the Vikings

m Believed to endow its imbibers with
N Immortality (= dependability)
N Reproductive capabilities
(=replication)
N Wisdom for weaving poetry

(= cross-cutting aspects of real-time
and fault tolerance)

N Happy and long married life
(= partition-tolerance)

© 2003 Priya Narasimhan 8

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

Real-Time |
Fault-Tolerant
o dnler ﬁ
= —l
Manager Manager

Replicated
Application i

Beplicated I — *‘—‘
Application
' : s Fault Detector| |

Beplicated E -

Middleware

(CORBA, Real-Time Java)

."]!:. 1 '_IE il 1 : -
APt u“tLV—_.‘ | Fault Detector|| |-
|« Fault Detector|] | |

Middleware
(CORBA, Real-Time Java) e '
Middleware c or |
e [Interceptor),
#ET Interceptor .-..Il'ltf.‘l'{:-E-tﬂl' 7
J—‘ : ’ | Fault Tolerance ||
i —___ Fault Tolerance ||
1| % : Operating System
1 Fault Tolerance || ¢ = SR
: Operating System .

cr

Factory &
Local Resource Mana

—» QOperating System

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

Resource-Aware RT-FT Scheduling

m Requires ability to predict and to control resource usage
N Example: Virtual memory is too unpredictable/unstable for real-time usage
N RT-FT applications that use virtual memory need better support

m Needs input from the local and global resource managers
N Resources of interest: load, memory, network bandwidth
N Parameters: resource limits, current resource usage, usage history profile

m Uses resource usage input for

N Proactive action

N Predict and perform new resource allocations

N Migrate resource-hogging objects to idle machines before they start executing
N Reactive action

N Respond to overload conditions and transients

N Migrate replicas of offending objects to idle machines even as they are
executing invocations

© 2003 Priya Narasimhan 10

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

Proactive Dependability

m What if we knew, with some confidence, when a fault was to occur?

m Needs input from a fault-predictor (error-log analysis)
N To determine when, and what kinds of, faults can occur
N To schedule fault detection time based on prediction

m Needs input from a recovery-predictor
N Offline predictor: Source code analysis for worst-case recovery time

N Look at each object’s data structures
N Looks at the object’s containing process and ORB interactions
N Not comprehensive: unable to predict dynamic memory allocations
N Runtime predictor: Object execution and memory allocation profile

N Intercepts and observes runtime memory allocations (e.g., object instantiation,
library loading), connection establishment, etc.

N Prepares for the worst-case replica recovery time

© 2003 Priya Narasimhan 11

MEAD: Real-Time Fault-Tolerant Middleware

Offline Program Analysis

m Application may contain RT vs. FT conflicts

m Application may be non-deterministic

m Program analyzer sifts interactively through application code
N To pinpoint sources of conflict between real-time and fault-tolerance
N To determine size of state, and to estimate recovery time

N To determine the appropriate points in the application for the
incremental checkpointing of the application

N To highlight, and to compensate for, sources of non-determinism
N Multi-threading
N Direct access to I/O devices
N Local timers

m Offline program analyzer feeds its recovery-time estimates to
the Fault-Tolerance Advisor

© 2003 Priya Narasimhan 12

MEAD: Real-Time Fault-Tolerant Middleware

Fault-Tolerance Advisor

m Configuring fault tolerance today is mostly ad-hoc

m To eliminate the guesswork, we deployment/run-time advice on
N Number of replicas
N Checkpointing frequency
N Fault-detection frequency, etc.

m Input to the Fault-Tolerance Advisor
N Application characteristics (using output from Ask Andy)
N System reliability characteristics
N System’s and application’s resource usage

m Fault-Tolerance Advisor works with other MEAD components to
N Enforce the reliability advice
N Sustain the reliability of the system, in the presence of faults

© 2003 Priya Narasimhan 13

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

Fault-Tolerance Advisor

Reliability requirements
Recovery time

%) I
C =
Faults to tolerate
Offline program ‘ém‘/"i/ l‘

[
=

Middleware analyzer

Application m

I] Tolerance

Advisor

RT-FT Schedule

resource

Replication style
Checkpointing rate
Fault detection rate
Locations of replicas

Operating system,
Network speed/type,
Configuration,
Workstation speed/type

© 2003 Priya Narasimhan 14

MEAD: Real-Time Fault-Tolerant Middleware

Mode-Driven Fault-Tolerance

m Most applications have multiple modes of operation
N Example: an unmanned aerial vehicle (UAV) might be modal

N Surveillance mode

N Target recognition mode
N Tracking mode

N Feedback/Control mode

m Each mode might require different fault-tolerance mechanisms
N The critical elements in the path might differ
N The resource usage might differ, e.g., more bandwidth used in some modes
N The notion of distributed system “state” might be different

m MEAD aims to provide the “right mode-specific fault-tolerance”
N Based on the Fault-Tolerance Advisor’s inputs
N In response to (omens heralding) mode changes

© 2003 Priya Narasimhan 15

MEAD: Real-Time Fault-Tolerant Middleware

Looking Ahead

m OMG RT-SIG in the process of drafting an RFP for RT-FT CORBA

m Consider (and seek means to reconcile) the fundamental
conflicts/tensions between real-time and fault-tolerance

N To avoid point solutions that might work well, but only for
well-understood applications, and only under certain constraints

N To allow for systems that are subject to dynamic conditions, e.g.,
changing constraints, new environments, overloads, faults,

m Expose interfaces that support the
N Capture of the application’s fault-tolerance and real-time needs
N Tuning of the application’s fault-tolerance and real-time configurations
N Query of the provided “level” of fault-tolerance and real-time

N Scheduling of both real-time and fault-tolerance (fault-detection, fault-
recovery and fault-forecasting) activities

© 2003 Priya Narasimhan 16

MEAD: Real-Time Fault-Tolerant Middleware

Summary

m Resolving trade-offs between real-time and fault tolerance
N Ordering of tasks to meet replica consistency and task deadlines
N Bounding fault detection and recovery times in asynchronous environment

N Estimating worst-case performance in fault-free, faulty and recovery cases

m MEAD’s RT-FT middleware support

N Tolerance to crash, communication, timing and partitioning faults

N Resource-aware RT-FT scheduler to schedule recovery actions

N Proactive dependability framework

N Fault-tolerance advisor to take the guesswork out of configuring reliability
N Offline program analysis to detect, and to compensate for, RT-FT conflicts

m Ongoing research and development with RT-CORBA and RT-Java
m Intention to participate in the standardization efforts of the OMG

© 2003 Priya Narasimhan 17

MEAD: Real-Time Fault-Tolerant Middleware

Carnegie Mellon

For More Information on MEAD A ENGINEERING

i

http://www.ece.cmu.edu/~mead

Priya Narasimhan
Assistant Professor of ECE and CS
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Tel: +1-412-268-8801
priya@cs.cmu.edu

© 2003 Priya Narasimhan 18

MEAD: Real-Time Fault-Tolerant Middleware

	Middleware for Embedded Adaptive Dependability (MEAD)Real-Time Fault-Tolerant Middleware Support
	Motivation for MEAD
	Existing Technologies
	Combining Real-Time and Fault-Tolerance
	Architectural Overview
	So, What Do We Want To Tolerate?
	MEAD (Middleware for Embedded Adaptive Dependability)
	Resource-Aware RT-FT Scheduling
	Proactive Dependability
	Offline Program Analysis
	Fault-Tolerance Advisor
	Fault-Tolerance Advisor
	Mode-Driven Fault-Tolerance
	Looking Ahead …….
	Summary
	For More Information on MEAD

