
Carnegie Mellon

Middleware for Embedded Adaptive
Dependability (MEAD)

Real-Time Fault-Tolerant Middleware Support

Thomas D. Bracewell
Senior Principal Engineer

Raytheon
Sudbury, MA 01176

Priya Narasimhan
Assistant Professor of ECE and CS

Carnegie Mellon University
Pittsburgh, PA 15213-3890

2

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Motivation for MEAD

CORBA is increasingly used for applications, where dependability
and quality of service are important

The Real-Time CORBA (RT-CORBA) standard
The Fault-Tolerant CORBA (FT-CORBA) standard

But ……
Neither of the two standards addresses its interaction with the other
Either real-time support or fault-tolerant support, but not both
Applications that need both RT and FT are left out in the cold

Focus of MEAD
Why real-time and fault tolerance do not make a good “marriage”
Overcoming these issues to build support for CORBA applications that
require both real-time and fault tolerance

3

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Existing Technologies

The Real-time CORBA (RT-CORBA) standard
Scheduling of entities (threads)
Assignment of priorities of tasks
Management of process, storage and communication resources
End-to-end predictability

The Fault tolerant CORBA (FT-CORBA) standard
Replication of entities (CORBA objects or processes)
Management and distribution of replicas
Logging of messages, checkpointing and recovery
Strong replica consistency

4

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

FT-Determinism Coherent state across
replicas for every input

RT-Determinism Bounded predictable
temporal behavior

FT-Determinism prohibits the use of local
processor time

Use of timeouts and timer-based mechanisms

FT-Determinism prohibits the use of
multithreading

Multithreading for concurrency and efficient
task scheduling

Operations ordered to preserve data
consistency (across replicas)

Operations ordered to meet task deadlines

No advance knowledge of when faults might
occur

Requires a priori knowledge of events

Fault-Tolerant SystemsReal-Time Systems

5

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Combining Real-Time and Fault-Tolerance

Trade-offs between RT and FT for specific scenarios
Effective ordering of operations to meet both RT and FT requirements
Resolution of non-deterministic conflicts (e.g., timers, multithreading)

Impact of fault-tolerance and real-time on each other
Impact of faults/restarts on real-time behavior
Replication of scheduling/resource management components
Scheduling (and bounding) recovery to avoid missing deadlines

For large-scale systems
Scalable fault detection and recovery
Considering nested (multi-tiered) middleware applications
Tolerance to partitioning faults

6

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Architectural Overview
Use replication to protect

Application objects
Scheduler and global resource manager

Special RT-FT scheduler
Real-time resource-aware scheduling service
Fault-tolerant-aware to decide when to initiate recovery

Hierarchical resource management framework
Local resource managers feed into a replicated global resource manager
Global resource manager coordinates with RT-FT scheduler

Ordering of operations
Keeps replicas consistent in state despite faults, missed deadlines,
recovery and non-determinism in the system

7

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

So, What Do We Want To Tolerate?
Crash faults

Hardware and/or OS crashes in isolation
Process and/or Object crashes

Communication faults
Message loss and message corruption
Network partitioning

Malicious faults (commission/Byzantine)
Processor/process/object maliciously subverted

Omission faults
Missed deadline in a real-time system

Design faults
Correlated software/programming/design errors

Fault Model
Kinds of faults that MEAD

is designed to tolerate

8

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

MEAD (Middleware for Embedded Adaptive Dependability)

Our RT-FT Architecture
Why MEAD?
Legendary ambrosia of the Vikings
Believed to endow its imbibers with

Immortality (dependability)
Reproductive capabilities
(replication)
Wisdom for weaving poetry
(cross-cutting aspects of real-time
and fault tolerance)
Happy and long married life
(partition-tolerance)

9

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

10

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Resource-Aware RT-FT Scheduling
Requires ability to predict and to control resource usage

Example: Virtual memory is too unpredictable/unstable for real-time usage
RT-FT applications that use virtual memory need better support

Needs input from the local and global resource managers
Resources of interest: load, memory, network bandwidth
Parameters: resource limits, current resource usage, usage history profile

Uses resource usage input for
Proactive action

Predict and perform new resource allocations
Migrate resource-hogging objects to idle machines before they start executing

Reactive action
Respond to overload conditions and transients
Migrate replicas of offending objects to idle machines even as they are
executing invocations

11

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Proactive Dependability

What if we knew, with some confidence, when a fault was to occur?
Needs input from a fault-predictor (error-log analysis)

To determine when, and what kinds of, faults can occur
To schedule fault detection time based on prediction

Needs input from a recovery-predictor
Offline predictor: Source code analysis for worst-case recovery time

Look at each object’s data structures
Looks at the object’s containing process and ORB interactions
Not comprehensive: unable to predict dynamic memory allocations

Runtime predictor: Object execution and memory allocation profile
Intercepts and observes runtime memory allocations (e.g., object instantiation,
library loading), connection establishment, etc.
Prepares for the worst-case replica recovery time

12

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Offline Program Analysis
Application may contain RT vs. FT conflicts

Application may be non-deterministic
Program analyzer sifts interactively through application code

To pinpoint sources of conflict between real-time and fault-tolerance
To determine size of state, and to estimate recovery time
To determine the appropriate points in the application for the
incremental checkpointing of the application
To highlight, and to compensate for, sources of non-determinism

Multi-threading
Direct access to I/O devices
Local timers

Offline program analyzer feeds its recovery-time estimates to
the Fault-Tolerance Advisor

13

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Fault-Tolerance Advisor

Configuring fault tolerance today is mostly ad-hoc
To eliminate the guesswork, we deployment/run-time advice on

Number of replicas
Checkpointing frequency
Fault-detection frequency, etc.

Input to the Fault-Tolerance Advisor
Application characteristics (using output from Ask Andy)
System reliability characteristics
System’s and application’s resource usage

Fault-Tolerance Advisor works with other MEAD components to
Enforce the reliability advice
Sustain the reliability of the system, in the presence of faults

14

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Fault-Tolerance Advisor

Run-time
profile of
resource

usage

Middleware
Application

Operating system,
Network speed/type,
Configuration,
Workstation speed/type

Reliability requirements
Recovery time
Faults to tolerate

Offline program
analyzer

RT-FT Schedule
Number of replicas
Replication style
Checkpointing rate
Fault detection rate
Locations of replicas

Fault
Tolerance
Advisor

15

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Mode-Driven Fault-Tolerance
Most applications have multiple modes of operation

Example: an unmanned aerial vehicle (UAV) might be modal
Surveillance mode
Target recognition mode
Tracking mode
Feedback/Control mode

Each mode might require different fault-tolerance mechanisms
The critical elements in the path might differ
The resource usage might differ, e.g., more bandwidth used in some modes
The notion of distributed system “state” might be different

MEAD aims to provide the “right mode-specific fault-tolerance”
Based on the Fault-Tolerance Advisor’s inputs
In response to (omens heralding) mode changes

16

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Looking Ahead …….
OMG RT-SIG in the process of drafting an RFP for RT-FT CORBA
Consider (and seek means to reconcile) the fundamental
conflicts/tensions between real-time and fault-tolerance

To avoid point solutions that might work well, but only for
well-understood applications, and only under certain constraints
To allow for systems that are subject to dynamic conditions, e.g.,
changing constraints, new environments, overloads, faults, ……

Expose interfaces that support the
Capture of the application’s fault-tolerance and real-time needs
Tuning of the application’s fault-tolerance and real-time configurations
Query of the provided “level” of fault-tolerance and real-time
Scheduling of both real-time and fault-tolerance (fault-detection, fault-
recovery and fault-forecasting) activities

17

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

Summary
Resolving trade-offs between real-time and fault tolerance

Ordering of tasks to meet replica consistency and task deadlines
Bounding fault detection and recovery times in asynchronous environment
Estimating worst-case performance in fault-free, faulty and recovery cases

MEAD’s RT-FT middleware support
Tolerance to crash, communication, timing and partitioning faults
Resource-aware RT-FT scheduler to schedule recovery actions
Proactive dependability framework
Fault-tolerance advisor to take the guesswork out of configuring reliability
Offline program analysis to detect, and to compensate for, RT-FT conflicts

Ongoing research and development with RT-CORBA and RT-Java
Intention to participate in the standardization efforts of the OMG

18

Carnegie Mellon

© 2003 Priya Narasimhan
MEAD: Real-Time Fault-Tolerant Middleware

For More Information on MEAD

http://www.ece.cmu.edu/~mead

Priya Narasimhan
Assistant Professor of ECE and CS
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Tel: +1-412-268-8801
priya@cs.cmu.edu

	Middleware for Embedded Adaptive Dependability (MEAD)Real-Time Fault-Tolerant Middleware Support
	Motivation for MEAD
	Existing Technologies
	Combining Real-Time and Fault-Tolerance
	Architectural Overview
	So, What Do We Want To Tolerate?
	MEAD (Middleware for Embedded Adaptive Dependability)
	Resource-Aware RT-FT Scheduling
	Proactive Dependability
	Offline Program Analysis
	Fault-Tolerance Advisor
	Fault-Tolerance Advisor
	Mode-Driven Fault-Tolerance
	Looking Ahead …….
	Summary
	For More Information on MEAD

