Design and Implementation Issues in the
Dynamic Scheduling Real-Time CORBA 2.0
Specification

Yamuna Krishnamurthy and Irfan Pyaral

OOMWorks, LLC
{yamuna,irfan}@oomworks.com

Christopher D. Gill Victor Fay Wolfe
Washington University, St. Louis University of Rhode Island
cdgill@cse.wustl.edu wolfe@cs.uri.edu
, , _ University
0‘0‘ @ Washington University | of Rhode

OOMWORKS " Island
Sunday, July 06, 2003

Yamuna Krishnamurthy et al Dynamic Scheduling

Comparison of Static and Dynamic Scheduling

Static Scheduling | Dynamic Scheduling

Tasks in the system are | Tasks in the system may or
known may not be known

Execution time and QoS | Execution time and QoS
requirements of tasks are | requirements of tasks change

fixed dynamically
A priori scheduling A priori scheduling analysis
analysis possible may not be possible

O @ Washington University [l S Risade’ 1

Yamuna Krishnamurthy et al Dynamic Scheduling

Real-Time CORBA (RTCORBA) 1.0 Overview

« RTCORBA 1.0 adds QoS control to regular
CORBA to improve the application

predictability
— Boundl_ng priority inversions End-to-End Priority
— Managing resources end-to-end Propagation
+ Policies & mechanisms for resource | _
configuration/control in RTCORBA incl Client in args Object
OBJ operation() (Servant)
Processor Resources REF
out args + return
— Thread pools :
.. Scheduling
— Portable priorities DL
Communication Resources

Standard

— Protocol policies ,
P Synchronizers [Object Adapter

— Explicit binding
Memory Resources
— Request buffering

Explicit
Binding

« These capabilities however address only
static real-time systems

Protocol Properties

‘O’Q @ : versi l_.'niversig-*
PNy S (= Washington University il ./ Rhode 2

Yamuna Krishnamurthy et al Dynamic Scheduling

Challenges: Dynamic Scheduling in Distributed Systems

« Tasks span multiple heterogeneous hosts

« Tasks and hosts they span are not known a priori

» Propagate scheduling requirements of a task across hosts it spans
« Allow custom scheduling discipline plug-ins

» Fixed priorities for tasks insufficient for scheduling analysis

« Cancel a distributed task and reschedule accordingly on hosts it
spans

* Local schedulers need to reschedule when tasks return from a
remote invocation

« Collaboration of schedulers in the system to ensure global
scheduling

O’C} = i ere University
NS (& Washington University o Rhode 3

Yamuna Krishnamurthy et al Dynamic Scheduling

Solution: RTCORBA 2.0

Scheduling Segment is a sequence of code with specific scheduling
requirements

» Distributable Thread (DT) a programming model abstraction for a
distributed task

— Loci of execution spans multiple nodes and
scheduling segments

— ldentified by a unique system wide id GUID
(Globally Unique 1d)

— DT scheduling information passed through GIOP
Service Contexts across hosts it spans
» Pluggable Scheduler facilitates the use of custom scheduling
disciplines
« Scheduling Points to interact with the scheduler at application and
ORSB level

O’C} = i ere University
NS (& Washington University o Rhode 4

Yamuna Krishnamurthy et al Dynamic Scheduling

Scheduling Segments

BSS -begin_scheduling_segment
ESS -end_scheduling_segment

« RTSchedul i ng:: Current has
methods to begin, end and update
scheduling segments and spawn a
new DT

« Each segment’s scheduling
characteristics is defined by its
Scheduling Parameters

ces gt * Nested scheduling segments allow
ESS_AI . association of different scheduling
I parameters

« Begin and End of a scheduling
; Nested Schedulin
Scheduling Segment Segment segment should be on the same

e ApplicationCall host
— TaskExecution

Host 1 Host 1

BSS—Al @ BSS - A

BSS-B

O’C} = i ere University
NS (& Washington University o Rhode 5

Yamuna Krishnamurthy et al Dynamic Scheduling

Distributable Threads May Span Endsystems

» Distributable Thread traversing multiple hosts with two-way invocations

| [
2 - Way
BSS - AV Invocation
2 - Way
DT1 .
D D */ Invocation
BSS -B
[] [
L L
[[
+ | L
ESS-B
[] [
LI LI
ESS - A+
Host 1 Host 2 Host 3

D Interceptor Call

O’C} = i ere University
NS (& Washington University o Rhode 6

Yamuna Krishnamurthy et al Dynamic Scheduling

Distributable Thread Creation

« Distributable Thread making « Distributable Thread Spawn
One-Way invocation — New native thread created
— New DT created

— New DT created implicitly — With implicit scheduling

— With implicit scheduling parameters
parameters
BSS - A
DT1 spawn ()
BSS - A i
¢ In\l/oc\{avt?gn /]
o] [
L
DT1 ot DT2
A\
ESS - AI
ESS - A
Host 1 Host 2 Host 1
O @ Washington University [l &/ Risode” 7

OOMWORKS

Island

Yamuna Krishnamurthy et al Dynamic Scheduling

Distributable Thread Cancellation

RTScheduling::DistributableThre
ad::cancel () cancels the DT

This operation raises the

CORBA:: Thread_Cancelled BSS'}
exception at the next scheduling
pOint % cancel DT Head of DT
The exception is propagated to ° Y
the start of the DT T \
The exception is not propagated — sehedaling point
to the head of the DT T [
DT can be cancelled on any host Host 1 Host 2 Host 3
that it currently spans
O @ Washington University [l S Risade’ 8

Yamuna Krishnamurthy et al Dynamic Scheduling

Pluggable Scheduling

Running DT Scheduling/Dispatching

- .}3 — Enforce predictable behavior in DRE
Waltlng systems

Distributable Alternative disciplines

Descriptor — Custom scheduling disciplines dictated by
system requirements

D
> 3 — Queried via resolve_initial_references
"3 “RTScheduler”

RTScheduling::Scheduler interface

_>3 @ — From which implementations are derived
— Interactions with application and ORB

Scheduler Managers

_ane (pOSS|ny — Install/manage schedulers in the ORB
one of many)
Og @ Washington University [l - Risage’ 9

Yamuna Krishnamurthy et al Dynamic Scheduling

Scheduling Points

Service Context

inargs
O >

: Object
- Of:gesrij?vgeo (Servant) 1. Begin scheduling
segment or spawn
2. Update scheduling
T segment
! 3. End scheduling
IDL
(Skeletons 1 segment
Dynamic 4. Send request
Seheduler @) Objecte 5. Receive request
} | Adapter 6. Send reply
7. Receive reply
ORB Core
O @ Washington University [l - Risage’ 10

OOMWORKS Rhodc

Yamuna Krishnamurthy et al

Dynamic Scheduling

Scheduling Points, Continued

User / ORB

Scheduler Upcall

Current::spawn()

begi n_new schedul i ng_segnent ()

Current: : begi n_schedul i ng_segnent ()
[when creating DTS

begi n_new schedul i ng_segnent ()

Current: : begi n_schedul i ng_segnent ()
[when creating nested segments]

begi n_nest ed_schedul i ng_segnent ()

Current::update _schedul i ng_segnent ()

updat e_schedul i ng_segnent ()

Current::end_schedul i ng_segnent ()
[when ending scheduling nested segments)

end_nest ed_schedul i ng_segnent ()

Current::end_schedul i ng_segnent ()
[when destroying DT9|

end_schedul i ng_segnent ()

Di stri but abl eThread: : cancel ()

cancel ()

Qut goi ng request

send_request ()

| ncom ng request

recei ve_request ()

Qutgoing reply

send_repl y()

| ncom ng reply

recei ve_reply()

O

OOMWORKS

B Washington University

University
of R]l()dé} 11
Island

Yamuna Krishnamurthy et al Dynamic Scheduling

Mapping Distributable Threads to OS Threads

« DT identity (GUID) vs. OS thread identity (tid)

— Mapping may be many-to-many and may evolve over time
— Need GUID aware concurrency and synchronization mechanisms
« ORB-level schedulers, but also lower-level mutexes, TSS, managers

— DT cancellation semantics depends on ORB-level concurrency
 |.e., reactive vs. cooperative vs. preemptive

'O'{) @ : versi l_.fl}it’e;'sigf
OS2 Washington University i ./ Rhode 12

Yamuna Krishnamurthy et al Dynamic Scheduling

Dynamic Distributed Scheduling Service

END-TO-END PRIORITY

Distributed Scheduling \ PROPAGATION
Service in args
operation()
CLIENT OBJECT OBJECT
RET out a1gs + 1retuin value (SER‘F ANT)
* Distributed Scheduling STURS
SKEELETON

Service works with ORB local ¥
scheduler to enforce global
scheduling

» Set end-to-end
Urgencies (MUF) or raw
CORBA priorities for DTs

» Determine cancellation
points for overload
management

* Interact with future
scheduling adaptation
mechanisms

Real-Time
OBJECT ADAPTER

ORB CORE
PROTOCOL

05 KERNEL JRMMGSREEE 0S KERNEL

05 10 SUBSYSTEM
TWOREK ADAPTERS

08 10 SUBSYSTEM

TWORK ADAPTER

NETWORK

‘O’Q @ : versi l_.'niversig-*
ocombrks e Washington University o/ Rhode 13

Yamuna Krishnamurthy et al

Dynamic Scheduling

—» Local Work

DT3 & DTS

Fixed Priority Scheduler

—» Remote Work

Fixed Priority Schedule Graph

=
= DTI3-

=« Srhedule on Host |
=— Sehedule on Host 2

g D712
|
3
H
i
']
76 - e A o
= e
- r-F—-- - =
A —_ l
] : . L ' '
4] (4] 20 L] H

I. LTS | HEES 6

oo * I | \Dﬁig&
I = I I =
[[
DT Execution Time
GUID ?::12 (secs)
on Importance
Hostz | ' (59¢9) Local Dist
12 15 10 -
13 5 2 15 -
Execution Time
cup | Ser (sec5)
on Time Importance
Host1 | T (5€¢s) Local | Dist
3 4 10 5 5
4 7 8 10 -
5 4 5 5
6 7 5 -
24
OOMWORKS

University
of Rhode
Island

B Washington University

14

Yamuna Krishnamurthy et al

Dynamic Scheduling

Shortcomings of the RTCORBA 2.0 specification

Redundant operations for querying DT id
— Current::get current id() is
redundant
— Id accessed with readonly attribute | d

Insufficient operation parameters for
Current::spawn()

— Name, scheduling parameters

— CORBA: : Voi dDat a dat a required
by Thr eadAct i on: : do() method
called by spawn

Insufficient operations in

RTSchedul i ng: : Schedul er interface
for user and ORB interaction with
scheduler

User / ORB

Scheduler

Current::spawn()

begi n_new_schedul i ng_
segment ()

Current::
begi n_schedul i ng_segnent ()

begi n_new_schedul i ng_
segment ()

Current::
begi n_schedul i ng_segnent ()

begi n_nest ed_schedul i ng
_segnent ()

Current::
updat e_schedul i ng_segment ()

updat e_schedul i ng_
segnent ()

Current::
end_schedul i ng_segnent ()

end_nest ed_schedul i ng_
segnent ()

Current:: end_schedul i ng_
end_schedul i ng_segnent () segnent ()
Di stri but abl eThread: : cancel ()

cancel ()

Qut goi ng request

send_request ()

I ncom ng request

recei ve_request ()

Qut goi ng reply

send_reply()

I ncomng reply

recei ve_reply()

O

OOMWORKS

B Washington University

University
of Rll()dé} 15
Island

Yamuna Krishnamurthy et al Dynamic Scheduling

Future Work

* Global Scheduling
— System wide scheduling algorithm
— Interacting schedulers

* Multi-Level scheduling
— Meta scheduling
— Global optimality

O’C} = i ere University
NS (& Washington University o Rhode 16

Yamuna Krishnamurthy et al Dynamic Scheduling

Conclusions

« RTCORBA 2.0 provides mechanisms for dynamic scheduling in DRE
systems

« RTCORBA 2.0 provides interfaces for:
— User interaction with scheduler to schedule the task
— ORSB interaction with scheduler when sending/receiving requests

— Scheduler developer’s implementation and plug-in of specific
scheduling disciplines

* Implementation experience has shown some shortcomings in the
RTCORBA 2.0 standard, particularly for truly pluggable schedulers.

« RTCORBA 2.0 implementation in TAO

e Contacts
— Yamuna Krishnamurthy < >
— Chris Gill < >
— Vic Fay-Wolfe <wolfe@cs.uri.edu>

O’O = i ere University
NS (& Washington University o Rhode 17

