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Execution time and QoS 
requirements of tasks change 
dynamically

Execution time and QoS 
requirements of tasks are 
fixed

A priori scheduling analysis 
may not be possible 

A priori scheduling 
analysis possible

Tasks in the system may or 
may not be known

Tasks in the system are 
known

Dynamic SchedulingStatic Scheduling

Comparison of Static and Dynamic Scheduling
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Real-Time CORBA (RTCORBA) 1.0 Overview
• RTCORBA 1.0 adds QoS control to regular 

CORBA to improve the application 
predictability
– Bounding priority inversions
– Managing resources end-to-end

• Policies & mechanisms for resource 
configuration/control in RTCORBA include:

Processor ResourcesProcessor ResourcesProcessor ResourcesProcessor Resources
– Thread pools
– Priority models
– Portable priorities
Communication ResourcesCommunication ResourcesCommunication ResourcesCommunication Resources
– Protocol policies
– Explicit binding
Memory ResourcesMemory ResourcesMemory ResourcesMemory Resources
– Request buffering

• These capabilities however address only 
static real-time systems
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• Tasks span multiple heterogeneous hosts
• Tasks and hosts they span are not known a priori
• Propagate scheduling requirements of a task across hosts it spans
• Allow custom scheduling discipline plug-ins
• Fixed priorities for tasks insufficient for scheduling analysis
• Cancel a distributed task and reschedule accordingly on hosts it

spans
• Local schedulers need to reschedule when tasks return from a 

remote invocation
• Collaboration of schedulers in the system to ensure global 

scheduling

Challenges: Dynamic Scheduling in Distributed Systems
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Solution: RTCORBA 2.0
• Scheduling Segment Scheduling Segment Scheduling Segment Scheduling Segment is a sequence of code with specific scheduling 

requirements
• Distributable Thread (DT)Distributable Thread (DT)Distributable Thread (DT)Distributable Thread (DT) a programming model abstraction for a 

distributed task
– Loci of execution spans multiple nodes and 

scheduling segments
– Identified by a unique system wide id GUID 

(Globally Unique Id)
– DT scheduling information passed through GIOP 

Service Contexts across hosts it spans
• Pluggable SchedulerPluggable SchedulerPluggable SchedulerPluggable Scheduler facilitates the use of custom scheduling 

disciplines
• Scheduling PointsScheduling PointsScheduling PointsScheduling Points to interact with the scheduler at application and 

ORB level
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Scheduling Segments

• RTScheduling::Current has 
methods to begin, end and update 
scheduling segments and spawn a 
new DT

• Each segment’s scheduling 
characteristics is defined by its 
Scheduling Parameters 

• Nested scheduling segments allow 
association of different scheduling 
parameters 

• Begin and End of a scheduling 
segment should be on the same 
host

Host 1

BSS - A

ESS - A

Host 1

BSS - A

ESS - A

BSS - B

ESS - B

BSS - begin_scheduling_segment
ESS - end_scheduling_segment

Application Call
Task Execution

Scheduling Segment Nested Scheduling
Segment
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BSS - A

BSS - B

ESS - A

ESS - B

Host 1 Host 2 Host 3

2 -  Way
Invocation

2 -  Way
InvocationDT1

Interceptor Call

• Distributable Thread traversing multiple hosts with two-way invocations

Distributable Threads May Span Endsystems
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• Distributable Thread Spawn
– New native thread created
– New DT created
– With implicit scheduling 

parameters

• Distributable Thread making 
One-Way invocation
– New DT created implicitly
– With implicit scheduling 

parameters

Host 1

BSS - A

ESS - A

1 - Way
Invocation

Host 2

DT1
DT2

Host 1

BSS - A

ESS - A

spawn ()DT1

DT2

Distributable Thread Creation
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Distributable Thread Cancellation
• RTScheduling::DistributableThre

ad::cancel () cancels the DT
• This operation raises the 

CORBA::Thread_Cancelled 
exception at the next scheduling 
point

• The exception is propagated to 
the start of the DT

• The exception is not propagated 
to the head of the DT

• DT can be cancelled on any host 
that it currently spans

BSS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

DT cancelled
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Pluggable Scheduling

• Scheduling/Dispatching
– Enforce predictable behavior in DRE 

systems
• Alternative disciplines
– RMS, MUF, EDF, LLF
– Custom scheduling disciplines dictated by 

system requirements
– Queried via resolve_initial_references

• “RTScheduler”
• RTScheduling::Scheduler interface 
– From which implementations are derived
– Interactions with application and ORB

• Scheduler Managers
– Install/manage schedulers in the ORBLane (possibly 

one of many)

Waiting 
Distributable 

Threads (DTs) DT QoS
Descriptor

Running DT
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Scheduling Points

Object
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Stubs

IDL
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ORB Core

Dynamic
Scheduler
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Scheduling Points, Continued

receive_request()Incoming request

send_reply()Outgoing reply

receive_reply()Incoming reply

send_request()Outgoing request 

end_scheduling_segment()
Current::end_scheduling_segment()

[when destroying DTs]

begin_nested_scheduling_segment()
Current::begin_scheduling_segment()

[when creating nested segments]

cancel()DistributableThread::cancel()

end_nested_scheduling_segment()
Current::end_scheduling_segment()

[when ending scheduling nested segments]

update_scheduling_segment()Current::update_scheduling_segment()

begin_new_scheduling_segment()
Current::begin_scheduling_segment()

[when creating DTs]

begin_new_scheduling_segment()Current::spawn()

Scheduler UpcallUser / ORB
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Mapping Distributable Threads to OS Threads

• DT identity (GUID) vs. OS thread identity (tid)
– Mapping may be many-to-many and may evolve over time
– Need GUID aware concurrency and synchronization mechanisms
• ORB-level schedulers, but also lower-level mutexes, TSS, managers

– DT cancellation semantics depends on ORB-level concurrency
• I.e., reactive vs. cooperative vs. preemptive 

ORB

POA
Skeleton Skeleton

ORB

POA
Skeleton Skeleton

Network

Objects Objects DT
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• Distributed Scheduling 
Service works with ORB local 
scheduler to enforce global 
scheduling
• Set end-to-end
Urgencies (MUF) or raw 
CORBA priorities for DTs
• Determine cancellation 
points for overload 
management
• Interact with future 
scheduling adaptation 
mechanisms

Distributed Scheduling
Service

Dynamic Distributed Scheduling Service

RT CORBA 2.0 Pluggable Scheduler 
(e.g. WashU/Avionics Kokyu)

Real-Time
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Fixed Priority Scheduler

DistDistDistDistLocalLocalLocalLocal

-5476

55545
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551043
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-152513

-1015012

Execution Time 
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Importance

Start 
Time 

T (secs)

DT 
GUID

on 
Host2 

DT4 &
DT6

DT12 &
DT13

DT3 & DT5

Local Work Remote Work
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Shortcomings of the RTCORBA 2.0 specification

• Redundant operations for querying DT id
– Current::get_current_id() is 

redundant
– Id accessed with readonly attribute Id

• Insufficient operation parameters for 
Current::spawn()

– Name, scheduling parameters 
– CORBA::VoidData data required 

by ThreadAction::do() method 
called by spawn

• Insufficient operations in 
RTScheduling::Scheduler interface 
for user and ORB interaction with 
scheduler

receive_request()Incoming request

send_reply()Outgoing reply

receive_reply()Incoming reply

send_request()Outgoing request 

end_scheduling_
segment()

Current::
end_scheduling_segment()

begin_nested_scheduling
_segment()

Current::
begin_scheduling_segment()

cancel()
DistributableThread::
cancel()

end_nested_scheduling_
segment()

Current::
end_scheduling_segment()

update_scheduling_
segment()

Current::
update_scheduling_segment()

begin_new_scheduling_
segment()

Current::
begin_scheduling_segment()

begin_new_scheduling_
segment()

Current::spawn()

SchedulerUser / ORB
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Future Work

• Global Scheduling
– System wide scheduling algorithm
– Interacting schedulers

• Multi-Level scheduling
– Meta scheduling
– Global optimality
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Conclusions
• RTCORBA 2.0 provides mechanisms for dynamic scheduling in DRE 

systems
• RTCORBA 2.0 provides interfaces for:
– User interaction with scheduler to schedule the task
– ORB interaction with scheduler when sending/receiving requests
– Scheduler developer’s implementation and plug-in of specific 

scheduling disciplines
• Implementation experience has shown some shortcomings in the 

RTCORBA 2.0 standard, particularly for truly pluggable schedulers.
• RTCORBA 2.0 implementation in TAO

– http://deuce.doc.wustl.edu/Download.html
• Contacts

– Yamuna Krishnamurthy <yamuna@oomworks.com>
– Chris Gill <cdgill@cse.wustl.edu>
– Vic Fay-Wolfe <wolfe@cs.uri.edu>


