
Sunday, July 06, 2003

Design and Implementation Issues in the Design and Implementation Issues in the Design and Implementation Issues in the Design and Implementation Issues in the
Dynamic Scheduling RealDynamic Scheduling RealDynamic Scheduling RealDynamic Scheduling Real----Time CORBA 2.0 Time CORBA 2.0 Time CORBA 2.0 Time CORBA 2.0

SpecificationSpecificationSpecificationSpecification
Yamuna Krishnamurthy and Irfan Pyarali

OOMWorks, LLC
{yamuna,irfan}@oomworks.com

Christopher D. Gill
Washington University, St. Louis

cdgill@cse.wustl.edu

Victor Fay Wolfe
University of Rhode Island

wolfe@cs.uri.edu

1

Yamuna Krishnamurthy et al Dynamic Scheduling

Execution time and QoS
requirements of tasks change
dynamically

Execution time and QoS
requirements of tasks are
fixed

A priori scheduling analysis
may not be possible

A priori scheduling
analysis possible

Tasks in the system may or
may not be known

Tasks in the system are
known

Dynamic SchedulingStatic Scheduling

Comparison of Static and Dynamic Scheduling

2

Yamuna Krishnamurthy et al Dynamic Scheduling

Real-Time CORBA (RTCORBA) 1.0 Overview
• RTCORBA 1.0 adds QoS control to regular

CORBA to improve the application
predictability
– Bounding priority inversions
– Managing resources end-to-end

• Policies & mechanisms for resource
configuration/control in RTCORBA include:

Processor ResourcesProcessor ResourcesProcessor ResourcesProcessor Resources
– Thread pools
– Priority models
– Portable priorities
Communication ResourcesCommunication ResourcesCommunication ResourcesCommunication Resources
– Protocol policies
– Explicit binding
Memory ResourcesMemory ResourcesMemory ResourcesMemory Resources
– Request buffering

• These capabilities however address only
static real-time systems

Client OBJ
REF

Object
(Servant)

in args
operation()

out args + return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding
Portable Priorities

Scheduling
Service

3

Yamuna Krishnamurthy et al Dynamic Scheduling

• Tasks span multiple heterogeneous hosts
• Tasks and hosts they span are not known a priori
• Propagate scheduling requirements of a task across hosts it spans
• Allow custom scheduling discipline plug-ins
• Fixed priorities for tasks insufficient for scheduling analysis
• Cancel a distributed task and reschedule accordingly on hosts it

spans
• Local schedulers need to reschedule when tasks return from a

remote invocation
• Collaboration of schedulers in the system to ensure global

scheduling

Challenges: Dynamic Scheduling in Distributed Systems

4

Yamuna Krishnamurthy et al Dynamic Scheduling

Solution: RTCORBA 2.0
• Scheduling Segment Scheduling Segment Scheduling Segment Scheduling Segment is a sequence of code with specific scheduling

requirements
• Distributable Thread (DT)Distributable Thread (DT)Distributable Thread (DT)Distributable Thread (DT) a programming model abstraction for a

distributed task
– Loci of execution spans multiple nodes and

scheduling segments
– Identified by a unique system wide id GUID

(Globally Unique Id)
– DT scheduling information passed through GIOP

Service Contexts across hosts it spans
• Pluggable SchedulerPluggable SchedulerPluggable SchedulerPluggable Scheduler facilitates the use of custom scheduling

disciplines
• Scheduling PointsScheduling PointsScheduling PointsScheduling Points to interact with the scheduler at application and

ORB level

5

Yamuna Krishnamurthy et al Dynamic Scheduling

Scheduling Segments

• RTScheduling::Current has
methods to begin, end and update
scheduling segments and spawn a
new DT

• Each segment’s scheduling
characteristics is defined by its
Scheduling Parameters

• Nested scheduling segments allow
association of different scheduling
parameters

• Begin and End of a scheduling
segment should be on the same
host

Host 1

BSS - A

ESS - A

Host 1

BSS - A

ESS - A

BSS - B

ESS - B

BSS - begin_scheduling_segment
ESS - end_scheduling_segment

Application Call
Task Execution

Scheduling Segment Nested Scheduling
Segment

6

Yamuna Krishnamurthy et al Dynamic Scheduling

BSS - A

BSS - B

ESS - A

ESS - B

Host 1 Host 2 Host 3

2 - Way
Invocation

2 - Way
InvocationDT1

Interceptor Call

• Distributable Thread traversing multiple hosts with two-way invocations

Distributable Threads May Span Endsystems

7

Yamuna Krishnamurthy et al Dynamic Scheduling

• Distributable Thread Spawn
– New native thread created
– New DT created
– With implicit scheduling

parameters

• Distributable Thread making
One-Way invocation
– New DT created implicitly
– With implicit scheduling

parameters

Host 1

BSS - A

ESS - A

1 - Way
Invocation

Host 2

DT1
DT2

Host 1

BSS - A

ESS - A

spawn ()DT1

DT2

Distributable Thread Creation

8

Yamuna Krishnamurthy et al Dynamic Scheduling

Distributable Thread Cancellation
• RTScheduling::DistributableThre

ad::cancel () cancels the DT
• This operation raises the

CORBA::Thread_Cancelled
exception at the next scheduling
point

• The exception is propagated to
the start of the DT

• The exception is not propagated
to the head of the DT

• DT can be cancelled on any host
that it currently spans

BSS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

DT cancelled

9

Yamuna Krishnamurthy et al Dynamic Scheduling

Pluggable Scheduling

• Scheduling/Dispatching
– Enforce predictable behavior in DRE

systems
• Alternative disciplines
– RMS, MUF, EDF, LLF
– Custom scheduling disciplines dictated by

system requirements
– Queried via resolve_initial_references

• “RTScheduler”
• RTScheduling::Scheduler interface
– From which implementations are derived
– Interactions with application and ORB

• Scheduler Managers
– Install/manage schedulers in the ORBLane (possibly

one of many)

Waiting
Distributable

Threads (DTs) DT QoS
Descriptor

Running DT

10

Yamuna Krishnamurthy et al Dynamic Scheduling

Scheduling Points

Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

in args

out args + return value

Operation ()

BSS or Spawn

ESS

USS

Client

Service Context
1

2

3

4 7

5

6 Object
Adapter

1. Begin scheduling
segment or spawn

2. Update scheduling
segment

3. End scheduling
segment

4. Send request
5. Receive request
6. Send reply
7. Receive reply

11

Yamuna Krishnamurthy et al Dynamic Scheduling

Scheduling Points, Continued

receive_request()Incoming request

send_reply()Outgoing reply

receive_reply()Incoming reply

send_request()Outgoing request

end_scheduling_segment()
Current::end_scheduling_segment()

[when destroying DTs]

begin_nested_scheduling_segment()
Current::begin_scheduling_segment()

[when creating nested segments]

cancel()DistributableThread::cancel()

end_nested_scheduling_segment()
Current::end_scheduling_segment()

[when ending scheduling nested segments]

update_scheduling_segment()Current::update_scheduling_segment()

begin_new_scheduling_segment()
Current::begin_scheduling_segment()

[when creating DTs]

begin_new_scheduling_segment()Current::spawn()

Scheduler UpcallUser / ORB

12

Yamuna Krishnamurthy et al Dynamic Scheduling

Mapping Distributable Threads to OS Threads

• DT identity (GUID) vs. OS thread identity (tid)
– Mapping may be many-to-many and may evolve over time
– Need GUID aware concurrency and synchronization mechanisms
• ORB-level schedulers, but also lower-level mutexes, TSS, managers

– DT cancellation semantics depends on ORB-level concurrency
• I.e., reactive vs. cooperative vs. preemptive

ORB

POA
Skeleton Skeleton

ORB

POA
Skeleton Skeleton

Network

Objects Objects DT

13

Yamuna Krishnamurthy et al Dynamic Scheduling

• Distributed Scheduling
Service works with ORB local
scheduler to enforce global
scheduling
• Set end-to-end
Urgencies (MUF) or raw
CORBA priorities for DTs
• Determine cancellation
points for overload
management
• Interact with future
scheduling adaptation
mechanisms

Distributed Scheduling
Service

Dynamic Distributed Scheduling Service

RT CORBA 2.0 Pluggable Scheduler
(e.g. WashU/Avionics Kokyu)

Real-Time

14

Yamuna Krishnamurthy et al Dynamic Scheduling

Fixed Priority Scheduler

DistDistDistDistLocalLocalLocalLocal

-5476

55545

-10874

551043

Execution Time
(secs)

Importance

Start
Time

T (secs)

DT
GUID

on
Host1

DistDistDistDistLocalLocalLocalLocal

-152513

-1015012

Execution Time
(secs)

Importance

Start
Time

T (secs)

DT
GUID

on
Host2

DT4 &
DT6

DT12 &
DT13

DT3 & DT5

Local Work Remote Work

15

Yamuna Krishnamurthy et al Dynamic Scheduling

Shortcomings of the RTCORBA 2.0 specification

• Redundant operations for querying DT id
– Current::get_current_id() is

redundant
– Id accessed with readonly attribute Id

• Insufficient operation parameters for
Current::spawn()

– Name, scheduling parameters
– CORBA::VoidData data required

by ThreadAction::do() method
called by spawn

• Insufficient operations in
RTScheduling::Scheduler interface
for user and ORB interaction with
scheduler

receive_request()Incoming request

send_reply()Outgoing reply

receive_reply()Incoming reply

send_request()Outgoing request

end_scheduling_
segment()

Current::
end_scheduling_segment()

begin_nested_scheduling
_segment()

Current::
begin_scheduling_segment()

cancel()
DistributableThread::
cancel()

end_nested_scheduling_
segment()

Current::
end_scheduling_segment()

update_scheduling_
segment()

Current::
update_scheduling_segment()

begin_new_scheduling_
segment()

Current::
begin_scheduling_segment()

begin_new_scheduling_
segment()

Current::spawn()

SchedulerUser / ORB

16

Yamuna Krishnamurthy et al Dynamic Scheduling

Future Work

• Global Scheduling
– System wide scheduling algorithm
– Interacting schedulers

• Multi-Level scheduling
– Meta scheduling
– Global optimality

17

Yamuna Krishnamurthy et al Dynamic Scheduling

Conclusions
• RTCORBA 2.0 provides mechanisms for dynamic scheduling in DRE

systems
• RTCORBA 2.0 provides interfaces for:
– User interaction with scheduler to schedule the task
– ORB interaction with scheduler when sending/receiving requests
– Scheduler developer’s implementation and plug-in of specific

scheduling disciplines
• Implementation experience has shown some shortcomings in the

RTCORBA 2.0 standard, particularly for truly pluggable schedulers.
• RTCORBA 2.0 implementation in TAO

– http://deuce.doc.wustl.edu/Download.html
• Contacts

– Yamuna Krishnamurthy <yamuna@oomworks.com>
– Chris Gill <cdgill@cse.wustl.edu>
– Vic Fay-Wolfe <wolfe@cs.uri.edu>

