Effective Use of Real-time Java to
Implement Real-time CORBA

Arvind S. Krishna Krishna Raman
Douglas C. Schmidt Raymond Klefstad
Elec & Comp. Eng. Dept Elec & Comp. Eng. Dept

Vanderbilt University University of California, Irvine

{arvindk, schmidt}@dre.vanderbilt.edu {kraman, klefstad}@uci.edu

OMG Workshop on Distributed Object Computing
For Real-time and Embedded Systems
Washington D.C

DHGIO

Motivation for ZEN Real-time ORB

Integrate best aspects of several key technologies
« Java: Simple, less error-prone, large user-base
» Real-time Java: Real-time support

« CORBA: Standards-based distributed
applications

» Real-time CORBA: CORBA with Real-time
QoS capabilities

ZEN project goals

« Make development of distributed, real-time, &
embedded (DRE) systems easier, faster, &
more portable

» Provide open-source Real-time CORBA ORB
written in Real-time Java to enhance
international middleware R&D efforts

Overview - ZEN R&D Plan

Phase | > Apply Optimization patterns
and principles

» ORB-Core Optimizations

* Micro ORB Architecture - Virtual
Component Pattern

» Connection Management - Acceptor-
Connector pattern, Reactor (java’s nio
package)

+ Collocation and Buffer Management
Strategies

* POA Optimizations

* Request Demultiplexing = Active
Demultiplexing & Perfect Hashing

» Object Key Processing Strategies -
Asynchronous completion token pattern

» Servant lookup - Reverse lookup map

» Concurrency Strategies - Half-
Sync/Half-Async

Phase || > Enhance Predictability by
applying RTSJ features
» Associate Scoped Memory with Key ORB
Components
— 1/O Layer : Acceptor-Connector, Transports
— ORB Layer: CDR Streams, Message Parsers
— POA Layer: Thread-Pools and Upcall Objects|

» Using NoHeapRealtimeThreads

— Ultimately use NHRT Threads for
request/response processing

— Reduce priority inversions from Garbage

Phase |ll = Build a Real-Time
CORBA ORSB that runs atop a mature
RTSJ Layer

Collector

THREAD PRIORITY
POOLS BANDS

RT-CORBA IMPLEMENTATION
SCOPED

NHRT Thread

RTS) OPTIMIZATIONS i
VIRT COMP ACTIVE ERFECT

OPTIMIZATION STRATEGIES

RT-Thread

RTSJ Thread Model

The Real-Time Specification for
Java (RTSJ) extends Java in the
following areas:

 New memory management
models that can be used in lieu
of garbage collection

« Stronger semantics on thread
and their scheduling

« Access to physical memory

* Asynchronous Event handling
mechanism

« Timers and Higher time
resolution

 Priority pre-emptive scheduler

RTSJ Thread Model

Real-time Threads — priority and
scheduling characteristics specified
NoHeapRealtimeThreads
* Do not “touch” the heap
» Use of NHRT threads have exec
eligibility higher than that of GC

«Interfaces»

Schedulable

Thread

RealtimeThread

FAN

NoHeapRealtimeThread

The RTSJ does not syntactically extend the Java language, strengthens
the semantics of certain Java features

RTSJ Memory Model

Scoped Memory
Types

* LTMemory: Allocation time is linear.

* VTMemory: Variable Allocation time.

Properties

» Reference counted; no of active threads in region

« When reference count of a region drops to zero

— All Objects within that region are considered
unreachable

— Finalizers of all objects run;
Scoped Memory Allocation

* Only a real-time thread may allocate from scoped

region; making region the current allocation
context.

» enter() method on the scoped memory region
Single Parent Rule
* Every Scoped Memory region may have only one parent

Assignment Rules
- obj in region my can hold ref to obj in region my, if
— lifetime (ma) <= lifetime (M)
- Heap & Immortal can never refer to objs in
Scoped regions

Immortal Memory

* Same lifetime as the JVM

» Objects allocated never garbage
collected

Physical Memory

* Allows access to specific locations
based on addresses.

Ty =7 MA
= :‘5
T, "?'] X,
L e A, w, Ty —»=
L ! o
' i i
.'-\.\. . ._\\ -
MA | | A M, T h?
- .-"-. b = A
e -
1

Applying RTSJ features in ZEN

Original design of ZEN
« All components allocated in heap

* Request processing thread may be
preempted by GC (demand garbage
collection)

Goals
« Compliance with CORBA specification
 Interoperability with classic CORBA

» Reduce overhead for applications not
using real-time features

End-user transparent

Design of ZEN for Real-Time CORBA

* Apply scoped memory along critical request
processing path

 Ultimately NHRT threads used for request
processing
* POA level policies

* Proper use of NHRT threads would
minimize GC execution during request

rocessin

ORB COMPONENTS

HEAF MIEMORY

Ohject Adapter

Buffer Manager Cther IOR Parsers
DRB
h’ Componenis | _||: _:I
BBBE - | @
Gl 5 : Object
Messaging COR Stream Hesolvers

Transport Layer.~

e [aneash

AL

Analyzing Request Processing Steps

Client Side Connection Initiation

1.The client ORB's connection cache ConnectorRegistry
is queried for an existing connection to the server

2.If no previous connection exists, a separate connection
handler (Transport T,) is created; Connector connects
to the server

3.This connection is added to the ConnectorRegistry
sin is bidirectional

These activities
are done for
every client

Steps are done
for every

request

connection

Server

4. An acceptor accepts the new in g connection.

5. This connection C, is then added to the server's
connection cache, AcceptorRegistry as the server may
send requests to the client.

6. A new connection handler T, is created to service
requests.

7. The Transport's event loop waits for data events from the
client.

4 Client ORB N
(Client Application)

GIOP
Message @

Pargers

1.0 AL AL 1.0

Connection Cache

© o —CD

— Buffer Manager
CT> é'I'ra\nsport T, @
\C Connector >/
4 Server ORB A
[Object Adapter E E

GIOP
Message

Connection

Buffer Manager

Rslal

G

Request Processing — Server Side

| ndependent &

Menory | ess

Steps for two
different clients do
not share context
Same for one client
as well

Repetitive &
Ephener al
Carried out for each

client request
Typically objects
live for one cycle

Server ORB

[@ Object Adapter E E‘

GIOP

Message @

A Pargers

1.0 1.1 1.0

Connection
Buffer Manager Cache

Ide Request Proce

11. The request header on connection C_1 is
read to determine the size of the request.

12. A buffer of the corresponding size is obtained
from the buffer manager to hold request and
read data.

13. The request is the demultiplexed to obtain
the target POA, servant, and skeleton
servicing the request. The upcall is dispatched
to the servant after demarshaling the request.

14. The reply is marshaled using the
corresponding GIOP message writer;
Transport sends reply to the client.

?—»ﬂ-—-ﬁ = % ©

o J

Thr ead Bound

Steps executed by
1/0 threads
Thread-Pool
threads

Application of Scoped Memory — ZEN

Analyzing Properties
Threadbound = associate with real-time
threads

 ZEN’s Acceptor-Connector and
Transport classes use RT-Threads

Independent & Memoryless = associate
with scoped memory

Ephemeral - objects created in scoped
region not required after one cycle of
request/response processing

Associating Scoped Memory

*Encapsulate steps as “logic” class 2>
instance of Java’s Runnable class

*Associate this logic class with real-time
threads

*Threads make the scoped region the
current allocation context by invoking
enter() on the scoped region

Applying Scoped Memory
1. Break Steps into three broad regions
based on request processing steps
I/O scope - read request
ORB scope - process request
POA scope = perform upcall send reply

2. Recursively enter each space from I/O
- POA scopes

3. Implicitly exit regions from POA - 1/O
scope

Applying Scoped Memory — I/O Scope

/O Scope
« Steps This phase of demultiplexing corresponds to the steps 4-7

*Participants The participants for this phase include, acceptors, connectors,
and transports.

*RTSJ application

—Each of these components are thread-bound components and are designed
based on inner logic class

—Corresponds to the logic run by the thread

—Instead of creating the entire component in scoped memory, we create the
inner logic class in a scoped memory region, m,,

—This logic class is associated with the thread at creation time

—During ORB execution, multiple clients may connect to it, creating
transports for every active client

—Each of the transports will have a dedicated m;, region

/~ \
/O SCOPE Z Z Z
_ /\p J

Applying Scoped Memory — ORB Scope

ORB Scope
- Steps This phase of demultiplexing corresponds to the Steps 11-12
» Participants GIOP Message parsers, Buffer Allocators and CDR Streams.

 RTSJ application

—Based on the size of the header a RequestMessage buffer to hold the
request is created.

—The appropriate message parser is associated based on the type of the
request.

—The message parser and the RequestMessage buffer are created in a
nested memory region, mg,,.

—The ORB space is a nested memory region

—Using RTSJ memory rules, references from the ORB to the I/O space are
valid

(ORB CORE SCOPE

GIOP
Message

CDR Streams

1.7 1.1

Scoped Memory — POA Scope

Steps
» Demux request to get target POA, servant and skeleton
» Perform upcall on the servant
» Marshall reply back to client

Participants

» Worker thread — deques reques from buffer

» Message parser — parses the request to find target POA &
servant

» Upcall Object — holds info necessary to perform upcall
» Output buffer — holds response

RTSJ Association

« Each worker thread has a dedicated scoped region
» Worker thread dequeues the request from queue
* Makes the region its current allocation context
» enter() method on scoped region
» Performs upcall and sends reply to the client

 Exits the region, enabling allocated objects to be
freed

Our Application

* Compliant with the CORBA specification
» Does not violate RTSJ rules

SCOPED

/ MEMORY \

-

\ UPCALL a

OBJECTS

Predictability Enhancement

Overview
* POA Demultiplexing experiment
conducted to measure improvement
in predictability
Result Synopsis
* Average Measures:

« Scoped Memory does have
some overhead ~ 3 us

* Dispersion Measures:

« Considerable improvement in
predictability

* Dispersion improves by a ~
factor of 4

 Worst-Case Measures:

LM

ik

AVETIED

5 7§
Dicpli ol PO Hisraody

Stamdand Deviation

0 125 |50

175

23 50 V5 MO 125 LMD

Iepahi of MUY [Taracey

I

W satee] i

Lot

Hil

]

41
L

1 (R

—ik Scoped Memery
i g Mo

e e

A
|

11K}

+

Y
|
- Db il POV Flieraselsy

Max

Hil

foll}

4

R o T T S

M 50 A 10 XS X0 1V5

[lepety of FLLY | lleraes by

* Scoped memory bounds
worst case

« Heap shows marked
variability

Associating scoped memory

— Does not compromise performance
— significantly enhances predictability

— bounds worst case latency

http://www.cs.wustl.edu/~schmidt/PDF/RT-POA.pdf

&
L [1 [2y
X5 50 75 00 1S 150 VS

Concluding Remarks & Future Work

Concluding Remarks

* We present optimizations applied to address A @ e
RT-CORBA demultiplexing predictability & e

PO,
SCOPE

scalability challenges

 Our strategies in conjunction with RTSJ
platform help bound jitter and worst case
performance

=1 = =

QOREB CORE SCOPE

= | Hib

DIRECTION OF SCOPE NESTING

vy

VO SCOPE L_Em,,‘ 7 ‘ ‘T.g“— 3
Future Real-Time CORBA Research (. ““-w: :
* Applying Scoped Memory in ORB Core & I/O laye @ :

» Resolving challenges arising from associating RT
features

» Thread borrowing

* Use of NHRT threads may require end-user to be RTSJ
aware

* Modeling RTSJ exceptions e.g. ScopedCycleException
« Complete implementation of Real-time CORBA
specification

Downloading ZEN
* www.zen.uci.edu

References

« ZEN open-source download & web page:
* http://www.zen.uci.edu

 Real-time Java (JSR-1):
* http://java.sun.com/aboutJava/communityprocess/jsr/
jsr_001_real_time.html

* Dynamic scheduling RFP:
* http://www.omg.org/techprocess/meetings/schedule/
Dynamic_Scheduling_RFP.html

* Distributed Real-time Java (JSR-50):
* http://java.sun.com/aboutJava/communityprocess/jsr/
jsr_050_drt.ntml

» Aspectd web page:
* http://www.aspectJ.org

- JRate
* http://tao.doc.wustl.edu/~corsaro/jRate/

