
Effective Use of RealEffective Use of Real--time Java totime Java to
implement Realimplement Real--time CORBAtime CORBA

Krishna Raman
Raymond Klefstad
Elec & Comp. Eng. Dept

University of California, Irvine
{kraman, klefstad}@uci.edu

OMG Workshop on Distributed Object Computing
For Real-time and Embedded Systems

Washington D.C

Arvind S. Krishna
Douglas C. Schmidt
Elec & Comp. Eng. Dept

Vanderbilt University
{arvindk, schmidt}@dre.vanderbilt.edu

Motivation for ZEN Real-time ORB

Integrate best aspects of several key technologies
� Java: Simple, less error-prone, large user-base
� Real-time Java: Real-time support
� CORBA: Standards-based distributed

applications
� Real-time CORBA: CORBA with Real-time

QoS capabilities

ZEN project goals
� Make development of distributed, real-time, &

embedded (DRE) systems easier, faster, &
more portable

� Provide open-source Real-time CORBA ORB
written in Real-time Java to enhance
international middleware R&D efforts

Integrate best aspects of several key technologies
� Java: Simple, less error-prone, large user-base
� Real-time Java: Real-time support
� CORBA: Standards-based distributed

applications
� Real-time CORBA: CORBA with Real-time

QoS capabilities

ZEN project goals
� Make development of distributed, real-time, &

embedded (DRE) systems easier, faster, &
more portable

� Provide open-source Real-time CORBA ORB
written in Real-time Java to enhance
international middleware R&D efforts

Overview - ZEN R&D Plan
Phase I ! Apply Optimization patterns

and principles
� ORB-Core Optimizations

� Micro ORB Architecture ! Virtual
Component Pattern

� Connection Management ! Acceptor-
Connector pattern, Reactor (java�s nio
package)

� Collocation and Buffer Management
Strategies

� POA Optimizations
� Request Demultiplexing ! Active

Demultiplexing & Perfect Hashing
� Object Key Processing Strategies !

Asynchronous completion token pattern
� Servant lookup ! Reverse lookup map
� Concurrency Strategies ! Half-

Sync/Half-Async

Phase I ! Apply Optimization patterns
and principles

� ORB-Core Optimizations
� Micro ORB Architecture ! Virtual

Component Pattern
� Connection Management ! Acceptor-

Connector pattern, Reactor (java�s nio
package)

� Collocation and Buffer Management
Strategies

� POA Optimizations
� Request Demultiplexing ! Active

Demultiplexing & Perfect Hashing
� Object Key Processing Strategies !

Asynchronous completion token pattern
� Servant lookup ! Reverse lookup map
� Concurrency Strategies ! Half-

Sync/Half-Async

Phase II ! Enhance Predictability by
applying RTSJ features

� Associate Scoped Memory with Key ORB
Components

� I/O Layer : Acceptor-Connector, Transports
� ORB Layer: CDR Streams, Message Parsers
� POA Layer: Thread-Pools and Upcall Objects

� Using NoHeapRealtimeThreads
� Ultimately use NHRT Threads for

request/response processing
� Reduce priority inversions from Garbage

Collector

Phase II ! Enhance Predictability by
applying RTSJ features

� Associate Scoped Memory with Key ORB
Components

� I/O Layer : Acceptor-Connector, Transports
� ORB Layer: CDR Streams, Message Parsers
� POA Layer: Thread-Pools and Upcall Objects

� Using NoHeapRealtimeThreads
� Ultimately use NHRT Threads for

request/response processing
� Reduce priority inversions from Garbage

Collector

Phase III ! Build a Real-Time
CORBA ORB that runs atop a mature
RTSJ Layer

Phase III ! Build a Real-Time
CORBA ORB that runs atop a mature
RTSJ Layer

RTSJ Thread Model

The Real-Time Specification for
Java (RTSJ) extends Java in the
following areas:

� New memory management
models that can be used in lieu
of garbage collection

� Stronger semantics on thread
and their scheduling

� Access to physical memory
� Asynchronous Event handling

mechanism
� Timers and Higher time

resolution
� Priority pre-emptive scheduler

The Real-Time Specification for
Java (RTSJ) extends Java in the
following areas:

� New memory management
models that can be used in lieu
of garbage collection

� Stronger semantics on thread
and their scheduling

� Access to physical memory
� Asynchronous Event handling

mechanism
� Timers and Higher time

resolution
� Priority pre-emptive scheduler

The RTSJ does not syntactically extend the Java language, strengthens
the semantics of certain Java features

The RTSJ does not syntactically extend the Java language, strengthens
the semantics of certain Java features

RTSJ Thread Model
Real-time Threads – priority and
scheduling characteristics specified

NoHeapRealtimeThreads
• Do not “touch” the heap
• Use of NHRT threads have exec

eligibility higher than that of GC

RTSJ Thread Model
Real-time Threads – priority and
scheduling characteristics specified

NoHeapRealtimeThreads
• Do not “touch” the heap
• Use of NHRT threads have exec

eligibility higher than that of GC

Scoped Memory
Types
� LTMemory: Allocation time is linear.
� VTMemory: Variable Allocation time.
Properties
� Reference counted; no of active threads in region
� When reference count of a region drops to zero

� All Objects within that region are considered
unreachable

� Finalizers of all objects run;
Scoped Memory Allocation

� Only a real-time thread may allocate from scoped
region; making region the current allocation
context.

� enter() method on the scoped memory region
Single Parent Rule

� Every Scoped Memory region may have only one parent
Assignment Rules

� obj in region ma can hold ref to obj in region mb if
� lifetime (ma) <= lifetime (mb)

� Heap & Immortal can never refer to objs in
Scoped regions

Scoped Memory
Types
� LTMemory: Allocation time is linear.
� VTMemory: Variable Allocation time.
Properties
� Reference counted; no of active threads in region
� When reference count of a region drops to zero

� All Objects within that region are considered
unreachable

� Finalizers of all objects run;
Scoped Memory Allocation

� Only a real-time thread may allocate from scoped
region; making region the current allocation
context.

� enter() method on the scoped memory region
Single Parent Rule

� Every Scoped Memory region may have only one parent
Assignment Rules

� obj in region ma can hold ref to obj in region mb if
� lifetime (ma) <= lifetime (mb)

� Heap & Immortal can never refer to objs in
Scoped regions

RTSJ Memory Model
Immortal Memory

� Same lifetime as the JVM
� Objects allocated never garbage
collected

Immortal Memory
� Same lifetime as the JVM
� Objects allocated never garbage
collected

Physical Memory
� Allows access to specific locations
based on addresses.

Physical Memory
� Allows access to specific locations
based on addresses.

Applying RTSJ features in ZEN

Design of ZEN for Real-Time CORBA
� Apply scoped memory along critical request

processing path
� Ultimately NHRT threads used for request

processing
� POA level policies
� Proper use of NHRT threads would

minimize GC execution during request
processing

Design of ZEN for Real-Time CORBA
� Apply scoped memory along critical request

processing path
� Ultimately NHRT threads used for request

processing
� POA level policies
� Proper use of NHRT threads would

minimize GC execution during request
processing

Original design of ZEN
� All components allocated in heap
� Request processing thread may be

preempted by GC (demand garbage
collection)

Original design of ZEN
� All components allocated in heap
� Request processing thread may be

preempted by GC (demand garbage
collection)

Goals
� Compliance with CORBA specification
� Interoperability with classic CORBA
� Reduce overhead for applications not

using real-time features
� End-user transparent

Goals
� Compliance with CORBA specification
� Interoperability with classic CORBA
� Reduce overhead for applications not

using real-time features
� End-user transparent

Analyzing Request Processing Steps

Client Side Connection Initiation
1.The client ORB's connection cache ConnectorRegistry

is queried for an existing connection to the server
2.If no previous connection exists, a separate connection

handler (Transport T1) is created; Connector connects
to the server

3.This connection is added to the ConnectorRegistry
since C1 is bidirectional

Client Side Connection Initiation
1.The client ORB's connection cache ConnectorRegistry

is queried for an existing connection to the server
2.If no previous connection exists, a separate connection

handler (Transport T1) is created; Connector connects
to the server

3.This connection is added to the ConnectorRegistry
since C1 is bidirectional

Client ORBClient ORBClient ORBClient ORB

1,3

Buffer Manager

Transport T1
9, 15

9, 14
GIOP

Message
Parsers

1.0 1.01.1

10, 16

Waiting
Strategy

C1 C
2

C3

Connector

8, 17

Connection Cache
C1 C2 C3

Client Application

2

Server ORBServer ORBServer ORBServer ORB
13

Object AdapterObject AdapterObject AdapterObject Adapter

Acceptor 4

5

12

Buffer Manager

Transport T1
6, 7,14

Connection
Cache
C1

C2

C3

11, 14
GIOP

Message
Parsers

1.0 1.01.1

Server Side Connection Acceptance
4. An acceptor accepts the new incoming connection.
5. This connection C1 is then added to the server's

connection cache, AcceptorRegistry as the server may
send requests to the client.

6. A new connection handler T1 is created to service
requests.

7. The Transport's event loop waits for data events from the
client.

Server Side Connection Acceptance
4. An acceptor accepts the new incoming connection.
5. This connection C1 is then added to the server's

connection cache, AcceptorRegistry as the server may
send requests to the client.

6. A new connection handler T1 is created to service
requests.

7. The Transport's event loop waits for data events from the
client.

These activities
are done for
every client
connection

These activities
are done for
every client
connection

Steps are done
for every
request

Steps are done
for every
request

Request Processing � Server Side

Server Side Request Processing Steps
11. The request header on connection C_1 is

read to determine the size of the request.
12. A buffer of the corresponding size is obtained

from the buffer manager to hold request and
read data.

13. The request is the demultiplexed to obtain
the target POA, servant, and skeleton
servicing the request. The upcall is dispatched
to the servant after demarshaling the request.

14. The reply is marshaled using the
corresponding GIOP message writer;
Transport sends reply to the client.

Server Side Request Processing Steps
11. The request header on connection C_1 is

read to determine the size of the request.
12. A buffer of the corresponding size is obtained

from the buffer manager to hold request and
read data.

13. The request is the demultiplexed to obtain
the target POA, servant, and skeleton
servicing the request. The upcall is dispatched
to the servant after demarshaling the request.

14. The reply is marshaled using the
corresponding GIOP message writer;
Transport sends reply to the client.

Server ORBServer ORBServer ORBServer ORB
13

Object AdapterObject AdapterObject AdapterObject Adapter

Acceptor 4

5

12

Buffer Manager

Transport T1
6, 7,14

Connection
Cache
C1

C2

C3

11, 14
GIOP

Message
Parsers

1.0 1.01.1

Repetitive &
Ephemeral

Carried out for each
client request
Typically objects
live for one cycle

Repetitive &
Ephemeral

Carried out for each
client request
Typically objects
live for one cycle

Independent &
Memory less

Steps for two
different clients do
not share context
Same for one client
as well

Independent &
Memory less

Steps for two
different clients do
not share context
Same for one client
as well

Thread Bound

Steps executed by
I/O threads
Thread-Pool
threads

Thread Bound

Steps executed by
I/O threads
Thread-Pool
threads

Application of Scoped Memory � ZEN
Analyzing Properties
Threadbound ! associate with real-time
threads
� ZEN�s Acceptor-Connector and

Transport classes use RT-Threads

Independent & Memoryless ! associate
with scoped memory

Ephemeral ! objects created in scoped
region not required after one cycle of
request/response processing

Associating Scoped Memory
�Encapsulate steps as �logic� class !
instance of Java�s Runnable class
�Associate this logic class with real-time
threads
�Threads make the scoped region the
current allocation context by invoking
enter() on the scoped region

Analyzing Properties
Threadbound ! associate with real-time
threads
� ZEN�s Acceptor-Connector and

Transport classes use RT-Threads

Independent & Memoryless ! associate
with scoped memory

Ephemeral ! objects created in scoped
region not required after one cycle of
request/response processing

Associating Scoped Memory
�Encapsulate steps as �logic� class !
instance of Java�s Runnable class
�Associate this logic class with real-time
threads
�Threads make the scoped region the
current allocation context by invoking
enter() on the scoped region

Applying Scoped Memory
1. Break Steps into three broad regions

based on request processing steps
I/O scope ! read request
ORB scope ! process request
POA scope ! perform upcall send reply

2. Recursively enter each space from I/O
! POA scopes

3. Implicitly exit regions from POA ! I/O
scope

Applying Scoped Memory
1. Break Steps into three broad regions

based on request processing steps
I/O scope ! read request
ORB scope ! process request
POA scope ! perform upcall send reply

2. Recursively enter each space from I/O
! POA scopes

3. Implicitly exit regions from POA ! I/O
scope

I/O SPACE

ORB SPACE

POA SPACE

NESTED SCOPES

REFE
RENCES

: IN
NER

 !
 O

UTE
R

en
ter

() exit

POA
SPACE

ORB
SPACE

I/O
SPACE

Applying Scoped Memory � I/O Scope

I/O Scope
� Steps This phase of demultiplexing corresponds to the steps 4-7
� Participants The participants for this phase include, acceptors, connectors,
and transports.

� RTSJ application
�Each of these components are thread-bound components and are designed
based on inner logic class

�Corresponds to the logic run by the thread
�Instead of creating the entire component in scoped memory, we create the
inner logic class in a scoped memory region, mio

�This logic class is associated with the thread at creation time
�During ORB execution, multiple clients may connect to it, creating
transports for every active client

�Each of the transports will have a dedicated mio region

I/O Scope
� Steps This phase of demultiplexing corresponds to the steps 4-7
� Participants The participants for this phase include, acceptors, connectors,
and transports.

� RTSJ application
�Each of these components are thread-bound components and are designed
based on inner logic class

�Corresponds to the logic run by the thread
�Instead of creating the entire component in scoped memory, we create the
inner logic class in a scoped memory region, mio

�This logic class is associated with the thread at creation time
�During ORB execution, multiple clients may connect to it, creating
transports for every active client

�Each of the transports will have a dedicated mio region

I/O SCOPE

Acceptor

Transport Transport Transport

Applying Scoped Memory � ORB Scope

ORB Scope
� Steps This phase of demultiplexing corresponds to the Steps 11-12
� Participants GIOP Message parsers, Buffer Allocators and CDR Streams.
� RTSJ application

�Based on the size of the header a RequestMessage buffer to hold the
request is created.

�The appropriate message parser is associated based on the type of the
request.

�The message parser and the RequestMessage buffer are created in a
nested memory region, morb.

�The ORB space is a nested memory region
�Using RTSJ memory rules, references from the ORB to the I/O space are
valid

ORB Scope
� Steps This phase of demultiplexing corresponds to the Steps 11-12
� Participants GIOP Message parsers, Buffer Allocators and CDR Streams.
� RTSJ application

�Based on the size of the header a RequestMessage buffer to hold the
request is created.

�The appropriate message parser is associated based on the type of the
request.

�The message parser and the RequestMessage buffer are created in a
nested memory region, morb.

�The ORB space is a nested memory region
�Using RTSJ memory rules, references from the ORB to the I/O space are
valid

ORB CORE SCOPE
CDR Streams

GIOP
Message
Parsers

 1.0 1.1 1.1

Scoped Memory ─ POA Scope
Steps

� Demux request to get target POA, servant and skeleton
� Perform upcall on the servant
� Marshall reply back to client

Participants
� Worker thread � deques reques from buffer
� Message parser � parses the request to find target POA &

servant
� Upcall Object � holds info necessary to perform upcall
� Output buffer � holds response

Steps
� Demux request to get target POA, servant and skeleton
� Perform upcall on the servant
� Marshall reply back to client

Participants
� Worker thread � deques reques from buffer
� Message parser � parses the request to find target POA &

servant
� Upcall Object � holds info necessary to perform upcall
� Output buffer � holds response

RTSJ Association
� Each worker thread has a dedicated scoped region
� Worker thread dequeues the request from queue
� Makes the region its current allocation context

� enter() method on scoped region
� Performs upcall and sends reply to the client
� Exits the region, enabling allocated objects to be
freed

RTSJ Association
� Each worker thread has a dedicated scoped region
� Worker thread dequeues the request from queue
� Makes the region its current allocation context

� enter() method on scoped region
� Performs upcall and sends reply to the client
� Exits the region, enabling allocated objects to be
freed

Our Application
� Compliant with the CORBA specification
� Does not violate RTSJ rules

Our Application
� Compliant with the CORBA specification
� Does not violate RTSJ rules

Predictability Enhancement
Overview

� POA Demultiplexing experiment
conducted to measure improvement
in predictability

Result Synopsis
� Average Measures:

� Scoped Memory does have
some overhead ~ 3 µs

� Dispersion Measures:
� Considerable improvement in

predictability
� Dispersion improves by a ~

factor of 4
� Worst-Case Measures:

� Scoped memory bounds
worst case

� Heap shows marked
variability

Associating scoped memory
� Does not compromise performance
� significantly enhances predictability
� bounds worst case latency
http://www.cs.wustl.edu/~schmidt/PDF/RT-POA.pdf

Associating scoped memory
� Does not compromise performance
� significantly enhances predictability
� bounds worst case latency
http://www.cs.wustl.edu/~schmidt/PDF/RT-POA.pdf

Concluding Remarks & Future Work

Future Real-Time CORBA Research
• Applying Scoped Memory in ORB Core & I/O layer
• Resolving challenges arising from associating RTSJ

features
• Thread borrowing
• Use of NHRT threads may require end-user to be RTSJ

aware
• Modeling RTSJ exceptions e.g. ScopedCycleException

• Complete implementation of Real-time CORBA
specification

Future Real-Time CORBA Research
• Applying Scoped Memory in ORB Core & I/O layer
• Resolving challenges arising from associating RTSJ

features
• Thread borrowing
• Use of NHRT threads may require end-user to be RTSJ

aware
• Modeling RTSJ exceptions e.g. ScopedCycleException

• Complete implementation of Real-time CORBA
specification

Concluding Remarks
• We present optimizations applied to address

RT-CORBA demultiplexing predictability &
scalability challenges
• Our strategies in conjunction with RTSJ

platform help bound jitter and worst case
performance

Concluding Remarks
• We present optimizations applied to address

RT-CORBA demultiplexing predictability &
scalability challenges
• Our strategies in conjunction with RTSJ

platform help bound jitter and worst case
performance

Downloading ZEN
• www.zen.uci.edu

Downloading ZEN
• www.zen.uci.edu

References
• ZEN openZEN openZEN openZEN open----source download & web pagesource download & web pagesource download & web pagesource download & web page:
• http://www.http://www.http://www.http://www.zenzenzenzen....uciuciuciuci....eduedueduedu

• RealRealRealReal----time Java (JSRtime Java (JSRtime Java (JSRtime Java (JSR----1):1):1):1):
• http://java.sun.com/http://java.sun.com/http://java.sun.com/http://java.sun.com/aboutJavaaboutJavaaboutJavaaboutJava////communityprocesscommunityprocesscommunityprocesscommunityprocess////jsrjsrjsrjsr/ / / /

jsr_001_real_time.htmljsr_001_real_time.htmljsr_001_real_time.htmljsr_001_real_time.html

• Dynamic scheduling RFP:Dynamic scheduling RFP:Dynamic scheduling RFP:Dynamic scheduling RFP:
• http://www.http://www.http://www.http://www.omgomgomgomg.org/.org/.org/.org/techprocesstechprocesstechprocesstechprocess/meetings/schedule/ /meetings/schedule/ /meetings/schedule/ /meetings/schedule/

Dynamic_Scheduling_RFP.htmlDynamic_Scheduling_RFP.htmlDynamic_Scheduling_RFP.htmlDynamic_Scheduling_RFP.html

• Distributed RealDistributed RealDistributed RealDistributed Real----time Java (JSRtime Java (JSRtime Java (JSRtime Java (JSR----50):50):50):50):
• http://java.sun.com/http://java.sun.com/http://java.sun.com/http://java.sun.com/aboutJavaaboutJavaaboutJavaaboutJava////communityprocesscommunityprocesscommunityprocesscommunityprocess////jsrjsrjsrjsr////

jsrjsrjsrjsr_050__050__050__050_drtdrtdrtdrt.html.html.html.html

• AspectJAspectJAspectJAspectJ web page:web page:web page:web page:
• http://www.aspectJ.orghttp://www.aspectJ.orghttp://www.aspectJ.orghttp://www.aspectJ.org

• JRate JRate JRate JRate
• http://http://http://http://taotaotaotao.doc..doc..doc..doc.wustlwustlwustlwustl....eduedueduedu/~/~/~/~corsarocorsarocorsarocorsaro////jRatejRatejRatejRate////

