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What means Hard Real-Time Computing?

A real-time computer system must produce results before deadlines
that are dictated by the enviroment.
If the result has no utility after the  deadline has passed, the deadline 
is called firm otherwise it is soft.
If a catastrophe could result if a firm deadline is missed, the 
deadline is called hard.
A real-time computer system that has to meet at least one hard 
deadline is called a hard real-time system.
Hard- and soft real-time system design are fundamentally different.
Examples for hard real time systems:  Engine Control, X-by-Wire, 
Nuclear Power, Flight Control, Medical Systems
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Hard Real Time versus Soft Real Time

Characteristic Hard Real Time Soft Real Time
Response time hard soft
Pacing environment computer
Peak-Load Perform. predictable degraded
Error Detection system user
Safety critical non-critical
Redundancy active standby
Time Granularity millisecond second
Data Files small/medium large
Data Integrity short term long term
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Example of a Hard Real-Time System
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What is a “Component”?

In our context, a component is complete computer system that 
is time aware and forms an independent Fault Containment 
Region (FCR).  It consists of
♦ The hardware
♦ The system and application software
♦ The internal state 

The component interacts with its environment by the 
exchange of messages via interfaces.
What is a software component?  Does it have state?  Does it 
form an FCR?
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Model of a Component–Messages

OutputInput
compu-
tation

h-state

Start End

Messages must be correct, both in the domains of time and value.
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The 10-9 Challenge in  Hard Real-Time Systems
♦ The system as a whole must be more reliable than any one of its 

components: e.g., System Dependability 1 FIT--Component 
dependability 1000 FIT (1 FIT: 1 failure in 109 hours)

♦ Architecture must support fault-tolerance to mask component 
failures

♦ System as a whole is not testable to the required level of 
dependability.

♦ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of 
fault-containment regions (FCR) and a formal dependability 
model that depicts the system structure from the point of view of 
dependability.
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Make Certain that Components Fail Independently

A component forms a Fault-Containment Region (FCR).
Any dependence of FCR failures must be reflected in the 
dependability model--a challenging task!
Independence is a  system property.  Independence of FCRs can 
be compromised by
♦ Shared physical resources (hardware, power supply, time-

base, etc.)
♦ External faults (EMI, heat, shock, spatial proximity)
♦ Design
♦ Flow of erroneous messages
♦ Composite Interfaces 
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Some Important Concepts in Relation  to Time

We assume a (dense)  Newtonian time in the environment.
Instant:  cut of the timeline
Duration:  interval on the timeline
Event:  occurrence at an instant--has no duration

Omniscient Observer:  has a reference clock that is in perfect
Synchrony with Atomic Time
Absolute Timestamp: Timestamp generated by the reference clock

Real Time
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RT Entities, RT Images and RT Objects

RT Entity RT  Image RT Object

R
T
L
A
N

Operator Distributed Computer Control Object

A

B
C

A: Measured Value of Flow
B: Setpoint for Flow       C:  Intended Valve Position

C
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Real Time (RT) Entity

A Real-Time (RT) Entity is a state variable of interest for the 
given purpose that changes its state as a function of real-time.
We distinguish between:
♦ Continuous RT Entities
♦ Discrete RT Entities

Examples of RT Entities:
♦ Flow in a Pipe (Continuous)
♦ Position of a Switch (Discrete)
♦ Setpoint selected by an Operator
♦ Intended Position of an Actuator
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Observation

Information about the state of a RT-entity at a particular point 
in time is captured in an observation.  
An observation is an atomic triple 

Observation = <Name, Time, Value>
consisting of:
♦ The name of the RT-entity
♦ The point in real-time when the observation has been made
♦ The values of the RT-entity

Observations are transported in messages.
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State and Event Observation

An observation is a state observation,  if the value of the 
observation contains the full or partial state of the RT-entity. 
The time of a state observation denotes the point in time when 
the RT-entity was sampled.
An observation is an event observation, if the value of the 
observation contains the difference between the “old state” 
(the  last observed state) and the “new state”. The time of the 
event information denotes the point in time of the Left-event
of the “new state”.

Old state New state

Observation Real Time
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Example of State and Event Observation
State observation (blue):
<Name of RT entity, Time of observation, full value>
The flow is at 5 l/sec  a 10:45 a.m.
Event Observation (red):
<Name of Event, Time of event occurrence, state difference>
The flow changed by 1 l/sec  at 10:45 a.m.

RT Entity

RT Image



16

© H. Kopetz  06/07/2003 HRTC

RT Image

A RT-Image is a picture of a RT Entity. A RT image is 
accurate at a given point in time,  if it is an accurate 
representation, both  in the domains of value and time, of the 
corresponding RT Entity.

How long is the observation:

“The traffic light is green”

temporally accurate ?

Temporal parameters are associated with real-time data.
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Temporal Accuracy of an RT Image 

Real-Time

Accuracy Interval RT Entity
RT Image

Value

If a RT-image is updated by observations, then there will always be
a delay between the state of the RT entity and that of the RT image
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Jitter is Bad in Control Systems:

The consequences of a significant jitter:
♦ Measurement error increases
♦ Probability of Orphans
♦ Action Delay increases
♦ Clock Synchronization difficult
♦ Sporadic Failures in time-critical szenarios

Observation of the
Controlled Object

Output

Jitter:
Variability of the Delay

Delay Real-Time
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Probability of “Long” Jitter in PAR Protocols

Length of Jitter

Probability Density

dmin dmax

Application specific
critical jitter value

System operates
correctly

System Failure

Most of the time, the system will operate correctly.
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Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems  
(e.g., data flow from sensor node to processing node).  
We distinguish between:

Sender Receiver
Control

Elementary 
Interface:

Sender Receiver
Composite 
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages
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State Message versus Event Message

♦ State Message:  A periodic time-triggered message that contains state 
observations (synchronous).
Message  handling:  update in place and non-consuming read.
Periodic state messages can be implemented as an elementary interface 
(no dependence of sender on receivers) with error detection at the 
receiver.

♦ Event Message: An event-triggered message that contains event 
observations (asynchronous).
Message handling:  exactly-once semantics, realized by message 
queues. Requires a composite interface (dependence of sender on 
receivers) for error detection at the sender.

(Compare “sampled message” and “queued message”  in ARINC)
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Examples of ET and TT Messages

ET Message:
Client Server Request
Interrupt
Alarm Message
Diagnostic Message

Flexibility, Openness. Best 
Effort Performance

TT Message:
Data Sampling 
Control Loop
Periodic Display Refresh
Multimedia

Temporal Predictability, 
Minimal Jitter
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Unidirectional Information Transfer

Sender
Task

CNI

Queue

Receiving
Task

CNI

Queue

Sender
Task

CNI
DPRAM

Receiving
Task

CNI
DPRAM

Clock

Event-Message- Event Triggered:

State Messsage- Time Triggered:

Information Push Information Pull

Information Push Information Push

Control
Data
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Comparison Event and State Message

Event Messsage:
Event Information
Sporadic
Exactly Once 
Queue--Add Mess.
Dequeue--Consume
Tight
Unknown
Explicit (PAR Prot.)
At Sender
Loss of State Synchr.
Bidirectional (Queue)
Difficult, Composite
Significant

State Messsage:
State Information
Periodic
At least Once 
Read from DPRAM
Overwrite DPRAM
Loose
Constant
Implicit
At Receiver
Loss of Period
Unidirectional
Easy, Elementary
Minimal

Information Type
Temporal Pattern

Semantics 
Sender Access

Receiver Access
Synchronization

Min. Temp. Distance
Flow Control

Error Detection
Loss of  Message

Control Pattern
Multicast Topology

Jitter
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What Simplifies Open Interconnect?
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What Simplifies Fault Tolerance (TMR)?
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Preliminary Conclusion

♦ In hard real-time systems, we need both services
• Event Message Transport
• State Message Transport

♦ Time-critical information should be transported in State 
Messages

♦ Event Messages provide open and flexible mechanisms for 
the transport of non-time critical information

♦ The Architecture must support analytical reasoning about 
its safety, since ultradependability is not testable.
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The TTA is Waist-line Architecture

Basic Services:
•TT Transport
•Clock Sync
•Fault Isolation
•Diagnosis

Implementation 
of basic services is 

hidden from the application 

Higher-level services:
ET TT Transport

Diagnosis
Gateway

Etc.

Application Software 
using basic and 
higher level 
services

Formally analyzed and
validated basic services
are available and stable

Extend the range of
Implementation choices

New high-level
services to ease
application development

Higher-level services:
Application Diagnosis

Virtual Networks
ET  Transport

FTU Layer
Gateway
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Basic Services versus High-Level Services

The TTA distinguishes between four basis services and an open-
ended set of high-level services.  The basic services are:

(1) Time Triggered Transport of Messages
(2) Fault-Tolerant clock synchronization
(3)  Strong Fault-Isolation Services
(4)  Diagnostic  service

The high level services depend on the basic services, while the 
basic services do not depend on the high-level services!
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Basic Service 1: Message Transport by TTP/C

♦ TTP (Time-Triggered Protocol) generates a fault-tolerant 
global time-base.

♦ Media access is controlled by TDMA, based on this time.  ET 
messages are piggy-packed on the basic TT messages.

♦ Information identified by the common knowledge of the 
send/receive times.

♦ Two independent intelligent star couplers provide fault 
isolation in the temporal domain.

♦ Membership service to detect crash/omission (CO) failures. 
Also used to detect violations of the fault hypothesis.
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Basic Service 2:  Fault-Tolerant Sparse Time Base

If the occurrence of events is restricted to some active 
intervals  with duration πwith an interval of silence of 
duration ∆ between any two active intervals, then we call the
timebase π/∆-sparse, or sparse for short. 

0 1 2 3 4 5 6 7 8 9

Time

Events       are only allowed to occur at subintervals of the timeline

∆∆∆∆ ππππ∆∆∆∆ ππππππππ
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Basic Service 3:  Fault Isolation
In the Time-Triggered Architecture Fault-Containment Regions 
(FCRs) communicate by the exchange of messages:
♦ In a properly configured system, any FCR (node) can fail in an 

without disrupting the operation of the nodes that have not been
directly affected by the fault.

♦ Error Detection in the Time Domain is in the responsibility of the 
architecture.  It is performed by independent replicated guardians 
which are part of the architecture.

♦ Error Detection in the Value Domain is in the responsibility of the 
fault-tolerance layer or of the application (e.g., by TMR), 
supported by post condition checks at the guardians.

♦ TTP/C contains also a clique avoidance service, based on a 
membership service to detect a violation from the fault hypothesis.
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Basic Service 4:  Diagnosis

The TTP/C membership service checks continuously, which 
node is alive and which node has failed.  It monitors the 
correctness of the distributed computing base.
♦ The periodic TT message of each node is interpreted as a 

life sign of the sender.
♦ In order to distinguish between a sender fault and a 

receiver fault, the view of a third node is considered to be 
the judge (single fault assumption)

♦ Delay of the membership service < 2 TDMA rounds.
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HL Service:  ET Transport
Layered: ET service is implemented on top of a TT protocol 

Single time triggered access media access protocol. 

Time

Maintains
Temporal 

Composability

The CAN Protocol and the TCP/IP Protocol have been implemented
on top of basic TTP/C in order to be able to use legacy software and 
to support the integration of CORBA.
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HL Service:  CORBA Integration

Object Request Broker (ORB)--GIOP communication

ORB  at  A ORB at B

Object A Object B

Corba Facilities:
Time
Internationalization
Domain Specific, e.g,

Banking
Health Care

Corba Services:
Naming
Transaction
Security
Persistent State
Event Notification, and more

Time-Triggered
Architecture

TTA CNI
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Constraints on a Proposed Solution in CORBA

♦ Interoperability with traditional ORBs
♦ Provide Hard Real-Time capabilities by supporting 

State Message Transport in addtion to Event 
Message Transport

♦ Provide Composability
♦ Support of Fault Tolerance 
♦ Support Analytical Reasoning about Dependability 

at the level of the base Architecture
♦ Should be viable on embedded systems 

(small footprint)
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Proposed Solution

!!No changes required at ORBNo changes required at ORB
!!Application dependent Extensible Transport Plugin (could be Application dependent Extensible Transport Plugin (could be 
generated by a tool)generated by a tool)
!!Additional Overhead in the Extensible Transport Plugin (can Additional Overhead in the Extensible Transport Plugin (can 
be neglected if CPU power is significantly greater than network be neglected if CPU power is significantly greater than network 
performance)performance)
!!For a prototype we use the Open Communication Interface For a prototype we use the Open Communication Interface 
(OCI) as Extensible Transport(OCI) as Extensible Transport
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Proposed Mechanisms

♦ Communication Infrastructure provides both ET Message 
Channel and TT Message Channel

♦ IIOP works over ET Message Channel without any 
modification.

♦ Extensible Transport Plugin on Client‘s Side decides if 
information is available locally or must be requested from 
the remote CORBA object.



40

© H. Kopetz  06/07/2003 HRTC

Flow of State and Event Information in CORBA

OCI

ORB

TTP

GIOP

GIOP

Servant

RT Data

OCI

ORB

TTP

GIOP

GIOP

Client

RT Data

Node n-1 Node n Node n+1

CORBA RT Data

Event Information

State Information
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Delay and Jitter of a  TT Message

At present TT implementations up to 25 Mbit/second are 
available:
This implementations achieves:
♦ TDMA round (8 nodes) about 1 msec
♦ Transport delay about 125 µsec
♦ Jitter about 1 µsec

Delay and Jitter at the application level depend on the internal
structure of the node local operating system and middleware.
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Conclusion

The proposed integration of CORBA in the TTA (time-
triggered architecture) as developed within the HRTC project 
provides:
♦ An architecture which meets the safety requirements of 

ultradependable hard real-time application.
♦ The seamless integration of this architecture into the open 

information infrastructure by providing full compatibility 
with exisiting CORBA standards.

♦ A new mechanism for the transport of time-critical 
information within dedicated CORBA subsystems,


