
1

© H. Kopetz 06/07/2003 HRTC

CORBA in the Time-Triggered Architecture

H. Kopetz
TU Wien
July 2003

2

© H. Kopetz 06/07/2003 HRTC

Outline

Hard Real-Time Computing

Event and State Messages

The Time Triggered Architecture

The Marriage of CORBA with the TTA

Conclusion

3

© H. Kopetz 06/07/2003 HRTC

What means Hard Real-Time Computing?

A real-time computer system must produce results before deadlines
that are dictated by the enviroment.
If the result has no utility after the deadline has passed, the deadline
is called firm otherwise it is soft.
If a catastrophe could result if a firm deadline is missed, the
deadline is called hard.
A real-time computer system that has to meet at least one hard
deadline is called a hard real-time system.
Hard- and soft real-time system design are fundamentally different.
Examples for hard real time systems: Engine Control, X-by-Wire,
Nuclear Power, Flight Control, Medical Systems

4

© H. Kopetz 06/07/2003 HRTC

Hard Real Time versus Soft Real Time

Characteristic Hard Real Time Soft Real Time
Response time hard soft
Pacing environment computer
Peak-Load Perform. predictable degraded
Error Detection system user
Safety critical non-critical
Redundancy active standby
Time Granularity millisecond second
Data Files small/medium large
Data Integrity short term long term

5

© H. Kopetz 06/07/2003 HRTC

Example of a Hard Real-Time System

Driver
Interface

CC

Engine
Control

CC

I/O

Assistant
System

CC

Steering
Manager

CC

I/O

Gateway
Body

CC

I/O

Suspen-
sion

CC

I/O

CC: Communication Controller

Communication
Network

Interface (CNI)
within a node

Brake
Manager

CC

I/O

Body Electronics
Network

Communication
System

6

© H. Kopetz 06/07/2003 HRTC

What is a “Component”?

In our context, a component is complete computer system that
is time aware and forms an independent Fault Containment
Region (FCR). It consists of
♦ The hardware
♦ The system and application software
♦ The internal state

The component interacts with its environment by the
exchange of messages via interfaces.
What is a software component? Does it have state? Does it
form an FCR?

7

© H. Kopetz 06/07/2003 HRTC

Model of a Component–Messages

OutputInput
compu-
tation

h-state

Start End

Messages must be correct, both in the domains of time and value.

8

© H. Kopetz 06/07/2003 HRTC

The 10-9 Challenge in Hard Real-Time Systems
♦ The system as a whole must be more reliable than any one of its

components: e.g., System Dependability 1 FIT--Component
dependability 1000 FIT (1 FIT: 1 failure in 109 hours)

♦ Architecture must support fault-tolerance to mask component
failures

♦ System as a whole is not testable to the required level of
dependability.

♦ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of
fault-containment regions (FCR) and a formal dependability
model that depicts the system structure from the point of view of
dependability.

9

© H. Kopetz 06/07/2003 HRTC

Make Certain that Components Fail Independently

A component forms a Fault-Containment Region (FCR).
Any dependence of FCR failures must be reflected in the
dependability model--a challenging task!
Independence is a system property. Independence of FCRs can
be compromised by
♦ Shared physical resources (hardware, power supply, time-

base, etc.)
♦ External faults (EMI, heat, shock, spatial proximity)
♦ Design
♦ Flow of erroneous messages
♦ Composite Interfaces

10

© H. Kopetz 06/07/2003 HRTC

Some Important Concepts in Relation to Time

We assume a (dense) Newtonian time in the environment.
Instant: cut of the timeline
Duration: interval on the timeline
Event: occurrence at an instant--has no duration

Omniscient Observer: has a reference clock that is in perfect
Synchrony with Atomic Time
Absolute Timestamp: Timestamp generated by the reference clock

Real Time

11

© H. Kopetz 06/07/2003 HRTC

RT Entities, RT Images and RT Objects

RT Entity RT Image RT Object

R
T
L
A
N

Operator Distributed Computer Control Object

A

B
C

A: Measured Value of Flow
B: Setpoint for Flow C: Intended Valve Position

C

12

© H. Kopetz 06/07/2003 HRTC

Real Time (RT) Entity

A Real-Time (RT) Entity is a state variable of interest for the
given purpose that changes its state as a function of real-time.
We distinguish between:
♦ Continuous RT Entities
♦ Discrete RT Entities

Examples of RT Entities:
♦ Flow in a Pipe (Continuous)
♦ Position of a Switch (Discrete)
♦ Setpoint selected by an Operator
♦ Intended Position of an Actuator

13

© H. Kopetz 06/07/2003 HRTC

Observation

Information about the state of a RT-entity at a particular point
in time is captured in an observation.
An observation is an atomic triple

Observation = <Name, Time, Value>
consisting of:
♦ The name of the RT-entity
♦ The point in real-time when the observation has been made
♦ The values of the RT-entity

Observations are transported in messages.

14

© H. Kopetz 06/07/2003 HRTC

State and Event Observation

An observation is a state observation, if the value of the
observation contains the full or partial state of the RT-entity.
The time of a state observation denotes the point in time when
the RT-entity was sampled.
An observation is an event observation, if the value of the
observation contains the difference between the “old state”
(the last observed state) and the “new state”. The time of the
event information denotes the point in time of the Left-event
of the “new state”.

Old state New state

Observation Real Time

15

© H. Kopetz 06/07/2003 HRTC

Example of State and Event Observation
State observation (blue):
<Name of RT entity, Time of observation, full value>
The flow is at 5 l/sec a 10:45 a.m.
Event Observation (red):
<Name of Event, Time of event occurrence, state difference>
The flow changed by 1 l/sec at 10:45 a.m.

RT Entity

RT Image

16

© H. Kopetz 06/07/2003 HRTC

RT Image

A RT-Image is a picture of a RT Entity. A RT image is
accurate at a given point in time, if it is an accurate
representation, both in the domains of value and time, of the
corresponding RT Entity.

How long is the observation:

“The traffic light is green”

temporally accurate ?

Temporal parameters are associated with real-time data.

17

© H. Kopetz 06/07/2003 HRTC

Temporal Accuracy of an RT Image

Real-Time

Accuracy Interval RT Entity
RT Image

Value

If a RT-image is updated by observations, then there will always be
a delay between the state of the RT entity and that of the RT image

18

© H. Kopetz 06/07/2003 HRTC

Jitter is Bad in Control Systems:

The consequences of a significant jitter:
♦ Measurement error increases
♦ Probability of Orphans
♦ Action Delay increases
♦ Clock Synchronization difficult
♦ Sporadic Failures in time-critical szenarios

Observation of the
Controlled Object

Output

Jitter:
Variability of the Delay

Delay Real-Time

19

© H. Kopetz 06/07/2003 HRTC

Probability of “Long” Jitter in PAR Protocols

Length of Jitter

Probability Density

dmin dmax

Application specific
critical jitter value

System operates
correctly

System Failure

Most of the time, the system will operate correctly.

20

© H. Kopetz 06/07/2003 HRTC

Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).
We distinguish between:

Sender Receiver
Control

Elementary
Interface:

Sender Receiver
Composite
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages

21

© H. Kopetz 06/07/2003 HRTC

Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).
We distinguish between:

Sender Receiver
Control

Elementary
Interface:

Sender Receiver
Composite
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages

22

© H. Kopetz 06/07/2003 HRTC

State Message versus Event Message

♦ State Message: A periodic time-triggered message that contains state
observations (synchronous).
Message handling: update in place and non-consuming read.
Periodic state messages can be implemented as an elementary interface
(no dependence of sender on receivers) with error detection at the
receiver.

♦ Event Message: An event-triggered message that contains event
observations (asynchronous).
Message handling: exactly-once semantics, realized by message
queues. Requires a composite interface (dependence of sender on
receivers) for error detection at the sender.

(Compare “sampled message” and “queued message” in ARINC)

23

© H. Kopetz 06/07/2003 HRTC

Examples of ET and TT Messages

ET Message:
Client Server Request
Interrupt
Alarm Message
Diagnostic Message

Flexibility, Openness. Best
Effort Performance

TT Message:
Data Sampling
Control Loop
Periodic Display Refresh
Multimedia

Temporal Predictability,
Minimal Jitter

24

© H. Kopetz 06/07/2003 HRTC

Unidirectional Information Transfer

Sender
Task

CNI

Queue

Receiving
Task

CNI

Queue

Sender
Task

CNI
DPRAM

Receiving
Task

CNI
DPRAM

Clock

Event-Message- Event Triggered:

State Messsage- Time Triggered:

Information Push Information Pull

Information Push Information Push

Control
Data

25

© H. Kopetz 06/07/2003 HRTC

Comparison Event and State Message

Event Messsage:
Event Information
Sporadic
Exactly Once
Queue--Add Mess.
Dequeue--Consume
Tight
Unknown
Explicit (PAR Prot.)
At Sender
Loss of State Synchr.
Bidirectional (Queue)
Difficult, Composite
Significant

State Messsage:
State Information
Periodic
At least Once
Read from DPRAM
Overwrite DPRAM
Loose
Constant
Implicit
At Receiver
Loss of Period
Unidirectional
Easy, Elementary
Minimal

Information Type
Temporal Pattern

Semantics
Sender Access

Receiver Access
Synchronization

Min. Temp. Distance
Flow Control

Error Detection
Loss of Message

Control Pattern
Multicast Topology

Jitter

26

© H. Kopetz 06/07/2003 HRTC

What Simplifies Open Interconnect?

Event Messsage:
Event Information
Sporadic
Exactly Once
Queue--Add Mess.
Dequeue--Consume
Tight
Unknown
Explicit (PAR Prot.)
At Sender
Loss of State Synchr.
Bidirectional (Queue)
Difficult
Significant

State Messsage:
State Information
Periodic
At least Once
Read from DPRAM
Overwrite DPRAM
Loose
Constant
Implicit
At Receiver
Loss of Period
Unidirectional
Easy
Minimal

Information Type
Temporal Pattern

Semantics
Sender Access

Receiver Access
Synchronization

Min. Temp. Distance
Flow Control

Error Detection
Loss of Message

Control Pattern
Multicast Topology

Jitter

27

© H. Kopetz 06/07/2003 HRTC

What Simplifies Fault Tolerance (TMR)?

Event Messsage:
Event Information
Sporadic
Exactly Once
Queue--Add Mess.
Dequeue--Consume
Tight
Unknown
Explicit (PAR Prot.)
At Sender
Loss of State Synchr.
Bidirectional (Queue)
Difficult
Significant

State Messsage:
State Information
Periodic
At least Once
Read from DPRAM
Overwrite DPRAM
Loose
Constant
Implicit
At Receiver
Loss of Period
Unidirectional
Easy
Minimal

Information Type
Temporal Pattern

Semantics
Sender Access

Receiver Access
Synchronization

Min. Temp. Distance
Flow Control

Error Detection
Loss of Message

Control Pattern
Multicast Topology

Jitter

28

© H. Kopetz 06/07/2003 HRTC

Preliminary Conclusion

♦ In hard real-time systems, we need both services
• Event Message Transport
• State Message Transport

♦ Time-critical information should be transported in State
Messages

♦ Event Messages provide open and flexible mechanisms for
the transport of non-time critical information

♦ The Architecture must support analytical reasoning about
its safety, since ultradependability is not testable.

29

© H. Kopetz 06/07/2003 HRTC

The TTA is Waist-line Architecture

Basic Services:
•TT Transport
•Clock Sync
•Fault Isolation
•Diagnosis

Implementation
of basic services is

hidden from the application

Higher-level services:
ET TT Transport

Diagnosis
Gateway

Etc.

Application Software
using basic and
higher level
services

Formally analyzed and
validated basic services
are available and stable

Extend the range of
Implementation choices

New high-level
services to ease
application development

Higher-level services:
Application Diagnosis

Virtual Networks
ET Transport

FTU Layer
Gateway

30

© H. Kopetz 06/07/2003 HRTC

Basic Services versus High-Level Services

The TTA distinguishes between four basis services and an open-
ended set of high-level services. The basic services are:

(1) Time Triggered Transport of Messages
(2) Fault-Tolerant clock synchronization
(3) Strong Fault-Isolation Services
(4) Diagnostic service

The high level services depend on the basic services, while the
basic services do not depend on the high-level services!

31

© H. Kopetz 06/07/2003 HRTC

Basic Service 1: Message Transport by TTP/C

♦ TTP (Time-Triggered Protocol) generates a fault-tolerant
global time-base.

♦ Media access is controlled by TDMA, based on this time. ET
messages are piggy-packed on the basic TT messages.

♦ Information identified by the common knowledge of the
send/receive times.

♦ Two independent intelligent star couplers provide fault
isolation in the temporal domain.

♦ Membership service to detect crash/omission (CO) failures.
Also used to detect violations of the fault hypothesis.

32

© H. Kopetz 06/07/2003 HRTC

Basic Service 2: Fault-Tolerant Sparse Time Base

If the occurrence of events is restricted to some active
intervals with duration πwith an interval of silence of
duration ∆ between any two active intervals, then we call the
timebase π/∆-sparse, or sparse for short.

0 1 2 3 4 5 6 7 8 9

Time

Events are only allowed to occur at subintervals of the timeline

∆∆∆∆ ππππ∆∆∆∆ ππππππππ

33

© H. Kopetz 06/07/2003 HRTC

Basic Service 3: Fault Isolation
In the Time-Triggered Architecture Fault-Containment Regions
(FCRs) communicate by the exchange of messages:
♦ In a properly configured system, any FCR (node) can fail in an

without disrupting the operation of the nodes that have not been
directly affected by the fault.

♦ Error Detection in the Time Domain is in the responsibility of the
architecture. It is performed by independent replicated guardians
which are part of the architecture.

♦ Error Detection in the Value Domain is in the responsibility of the
fault-tolerance layer or of the application (e.g., by TMR),
supported by post condition checks at the guardians.

♦ TTP/C contains also a clique avoidance service, based on a
membership service to detect a violation from the fault hypothesis.

34

© H. Kopetz 06/07/2003 HRTC

Basic Service 4: Diagnosis

The TTP/C membership service checks continuously, which
node is alive and which node has failed. It monitors the
correctness of the distributed computing base.
♦ The periodic TT message of each node is interpreted as a

life sign of the sender.
♦ In order to distinguish between a sender fault and a

receiver fault, the view of a third node is considered to be
the judge (single fault assumption)

♦ Delay of the membership service < 2 TDMA rounds.

35

© H. Kopetz 06/07/2003 HRTC

HL Service: ET Transport
Layered: ET service is implemented on top of a TT protocol

Single time triggered access media access protocol.

Time

Maintains
Temporal

Composability

The CAN Protocol and the TCP/IP Protocol have been implemented
on top of basic TTP/C in order to be able to use legacy software and
to support the integration of CORBA.

36

© H. Kopetz 06/07/2003 HRTC

HL Service: CORBA Integration

Object Request Broker (ORB)--GIOP communication

ORB at A ORB at B

Object A Object B

Corba Facilities:
Time
Internationalization
Domain Specific, e.g,

Banking
Health Care

Corba Services:
Naming
Transaction
Security
Persistent State
Event Notification, and more

Time-Triggered
Architecture

TTA CNI

37

© H. Kopetz 06/07/2003 HRTC

Constraints on a Proposed Solution in CORBA

♦ Interoperability with traditional ORBs
♦ Provide Hard Real-Time capabilities by supporting

State Message Transport in addtion to Event
Message Transport

♦ Provide Composability
♦ Support of Fault Tolerance
♦ Support Analytical Reasoning about Dependability

at the level of the base Architecture
♦ Should be viable on embedded systems

(small footprint)

38

© H. Kopetz 06/07/2003 HRTC

Proposed Solution

!!No changes required at ORBNo changes required at ORB
!!Application dependent Extensible Transport Plugin (could be Application dependent Extensible Transport Plugin (could be
generated by a tool)generated by a tool)
!!Additional Overhead in the Extensible Transport Plugin (can Additional Overhead in the Extensible Transport Plugin (can
be neglected if CPU power is significantly greater than network be neglected if CPU power is significantly greater than network
performance)performance)
!!For a prototype we use the Open Communication Interface For a prototype we use the Open Communication Interface
(OCI) as Extensible Transport(OCI) as Extensible Transport

39

© H. Kopetz 06/07/2003 HRTC

Proposed Mechanisms

♦ Communication Infrastructure provides both ET Message
Channel and TT Message Channel

♦ IIOP works over ET Message Channel without any
modification.

♦ Extensible Transport Plugin on Client‘s Side decides if
information is available locally or must be requested from
the remote CORBA object.

40

© H. Kopetz 06/07/2003 HRTC

Flow of State and Event Information in CORBA

OCI

ORB

TTP

GIOP

GIOP

Servant

RT Data

OCI

ORB

TTP

GIOP

GIOP

Client

RT Data

Node n-1 Node n Node n+1

CORBA RT Data

Event Information

State Information

41

© H. Kopetz 06/07/2003 HRTC

Delay and Jitter of a TT Message

At present TT implementations up to 25 Mbit/second are
available:
This implementations achieves:
♦ TDMA round (8 nodes) about 1 msec
♦ Transport delay about 125 µsec
♦ Jitter about 1 µsec

Delay and Jitter at the application level depend on the internal
structure of the node local operating system and middleware.

42

© H. Kopetz 06/07/2003 HRTC

Conclusion

The proposed integration of CORBA in the TTA (time-
triggered architecture) as developed within the HRTC project
provides:
♦ An architecture which meets the safety requirements of

ultradependable hard real-time application.
♦ The seamless integration of this architecture into the open

information infrastructure by providing full compatibility
with exisiting CORBA standards.

♦ A new mechanism for the transport of time-critical
information within dedicated CORBA subsystems,

