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Characteristics of DRE Applications
• Representative hard real-time applications

– Avionic mission/control systems
– Theater missile defense
– Command and control 

• QoS resources which must be managed
– Computation resources
– Communication resources
– Power resources
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QoS Management Techniques

• Static QoS management
– Done at system design time
– Resources are provisioned 

before system runs
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• Dynamic QoS management
– Done at system runtime
– Adapts to changing 

environmental conditions
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A Motivating Real-Time Application
• An one-axis robot arm controller 

application
– 3 separate processes connected 

via ethernet

• Motor Modulator
– Advances stepping motor fixed 

angle for every Fwd/Rev 
command

– Activate mechanical brake when 
“stop”

• Controller 
– Updates current location
– Accelerates and decelerates 

motor 
– Stops  the motor

• Positioning Module
– Sends differential positioning 

information
– Programming proximity limits
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• Ensure timely response 
of “important” tasks 
– Define unified view of 

“importance”
• Portable Priority 

Mapping
• Handle “important” tasks 

first
– Preemptive task 

scheduling
– Priority Model

• Reserve CPU resources
– Thread Pooling

• Separate traffic of 
different importance
– Priority-Banded 

Connection
– Private Connection

Types of Real-time Resources
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Review - RT Policies/Resources
• RT policies can associate with 

objects of various granularities
– Client-side

1. ORB level
2. Thread level (RTCurrent)
3. Object level

– Server-side
1. ORB level
2. POA level
3. Object level

• Shared RT resources
– Shared by several POAs, 

objects (Thread Pooling)
– ORB: certain protocol policies
– Priority-mapping

• Requires end-to-end 
enforcement

• Results tightly coupled code Real-time CORBA leverages the CORBA 
Messaging QoS Policy framework
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Insertion Points for RT Systemic Properties into CCM
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Application Development Revisited

Can we now program this with CIAO?
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• Two parallel Two parallel Two parallel Two parallel 
applicationsapplicationsapplicationsapplications
– GPS display 

runs at higher 
rates

– Collision 
detection runs 
at lower rates

• Collision detection Collision detection Collision detection Collision detection 
requires immediate requires immediate requires immediate requires immediate 
attentionattentionattentionattention
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CIAO Examples
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CIAO Example - BoldStroke Configuration

RateGenerator:1@400MHz
HiResGPS: 40@400MHz
cockpitDisplay: 5@400MHz

RateGenerator→HiResGPS→
cockpitDisplay: 20
(not feasible on 200MHz CPU)

Deployment 
(400MHz 
CPU)

RateGenerator:1@400MHz
HiResGPS: 40@400MHz
cockpitDisplay: 5@400MHz

RateGenerator: {1,5,10,20,40}
HiResGPS: {x | x < 40}
cockpitDisplay: {y | y ≥≥≥≥ 5}

Packaging

WCET (in msec) Available Rates (in Hz)Config
Phase

RateGenerator:2@200MHz
HiResGPS: 80@200MHz
cockpitDisplay: 10@200MHz

RateGenerator→HiResGPS→
cockpitDisplay: 10
(not optimal on 400MHz CPU)

Deployment 
(200MHz 
CPU)

RateGenerator:1@400MHz
HiResGPS: 40@400MHz
cockpitDisplay: 5@400MHz

RateGenerator→HiResGPS→
cockpitDisplay: {10,20}

Assembly
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Summary of Meta-data for RT Policies
1. Component dependent

• Require RT ORB
• Priority model/default priority 

level
2. Logical resources

• Thread pooling
• Priority-banded
• Custom protocol policy

3. Application assembly
• Container policy 

(<homeplacement>)
• Priority model/priority level
• Association with (2) 

• Component policy:
• Override priority 

(SERVER_DECLARED)
• Priority-banded

• Connection policy:
• Priority-banded
• Request 

_validate_connection ()

4. Application deployment
• Priority mapping
• Server protocol policy
• Client protocol policy
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Static QoS Provisioning in Component-Integrated ACE ORB (CIAO)
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• Extension to CCM 
descriptors
– Component and 

connection QoS 
specifications

– ORB modules
– Adaptation modules

• QoS-enabled containers
• Policy-based adaptation 

insertion
• Client-side policy aggregates
• Integrating RT-CORBA
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What is Dynamic QoS Management?

• MeasureMeasureMeasureMeasure (sensors) system 
resource properties and 
environmental conditions

• EvaluateEvaluateEvaluateEvaluate performance based 
on specified QoS 
requirements for the system

• AdaptAdaptAdaptAdapt application behavior to 
meet QoS requirements
– Uses actuators to controlcontrolcontrolcontrol

behavior
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BBN’s QuO Add QoS Management to CORBA Middleware
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• Measurement
• In-band: via Instrumentation
• Out-of-band: provided by syscond objects

• Adaptation
• In-band: via delegates and gateways
• Out-of-band: triggered by transitions in contract 

regions
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Packaging QoS Management into Components

• In-band QoS components
– QoS components are inserted between two application components, e.g. 

C1 and C2
– QoS components expose delegate interfaces which intercept method 

invocations for C1 and C2 and adds QoS adaptation behaviors for C1 and 
C2

• Out-of-band QoS component
– QoS components contain system condition (syscond) objects which 

measure system and application performance, and callbacks (actuators) 
which trigger adaptive behaviors

C1 C2

qosket2qosket1

In-bandIn-band

out-of-bandA Prototypical 
Approach 
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Example of a Componentized Qosket
• A qosket component encapsulates

– Delegate interception interfaces
– Contract objects
– Syscond objects

• A qosket component interacts 
internally with
– Other qosket components for 

out-of-band control
– Component proxies for 

accessing resource control 
mechanisms

• Open questions
– Integration with event delivery 

mechanisms
– Installation/connecting of 

resource control mechanisms
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Delegate

QuO
Contract

Syscond
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Proxy

QuO
Kernel

Component
Proxy

Resource
Control
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Syscond

In-band

out-of-band



Nanbor Wang QoS-Aware CCM for DRE

Composing Dynamic QoS Provisioning into CCM
• Container aspect hooks 

provide fine grained 
control for inserting  QuO’s
delegates

• ORB configuration 
mechanism can install 
Qosket specific 
mechanisms and 
implementations

• Customized CCM 
components can 
implement QuO’s
contracts, SysConds, and 
callbacks objects
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• Extend CIAO to insert Qosket 
modules into applications 
transparently
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CIAO’s Contributions: Total QoS Provisioning and Enforcement

QoS Provisioning
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• Statically provision QoS resources end-to-end
• Monitor and manage QoS of the end-to-end 

functional application interaction
• Enable the adaptive and reflective decision-

making for dynamic QoS provisioning
• Integration with MDA tools such as CoSMIC and 

Cadena
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• Integrating CIAO 
and Qosket covers 
the QoS provisioning 
at the middleware 
level

• Separation of 
functional and 
systemic paths


