
July 7, 2003

A QoS-aware CORBA Component Model for
Distributed Real-time and Embedded

System Development
NanborNanborNanborNanbor WangWangWangWang and Chris Gilland Chris Gilland Chris Gilland Chris Gill
{nanbor,cdgill}@cse.wustl.edu

Department of Computer Science and Engineering
Washington University in St. Louis

This research is sponsored by DARPA PCES program under
Contract to Boeing (F33615-00-C-3048)

& Washington University in
St.Louis (F33615-00-C-1697),

partially in collaboration with BBN Technology.

Nanbor Wang QoS-Aware CCM for DRE

Characteristics of DRE Applications
• Representative hard real-time applications

– Avionic mission/control systems
– Theater missile defense
– Command and control

• QoS resources which must be managed
– Computation resources
– Communication resources
– Power resources

Nanbor Wang QoS-Aware CCM for DRE

QoS Management Techniques

• Static QoS management
– Done at system design time
– Resources are provisioned

before system runs

QoS
Systemic Path

Operating System

Middleware

Sys
Condition

Mechanism & Properties
Manager

Applications

Operating System

QoS
Descriptions

Interceptor

Middleware

Applications

Local
Resource
Manage-

ment

InterceptorSys
Condition

Sys
Condition

Sys
Condition

QoS
Descriptions

} {

Endsystem Endsystem

Local
Resource
Manage-

ment

Functional Path

Infrastructure Middleware

Distribution Middleware

Common Services

Domain-Specific Services

Infrastructure Middleware

Distribution Middleware

Common Services

Domain-Specific Services

• Dynamic QoS management
– Done at system runtime
– Adapts to changing

environmental conditions

Nanbor Wang QoS-Aware CCM for DRE

A Motivating Real-Time Application
• An one-axis robot arm controller

application
– 3 separate processes connected

via ethernet

• Motor Modulator
– Advances stepping motor fixed

angle for every Fwd/Rev
command

– Activate mechanical brake when
“stop”

• Controller
– Updates current location
– Accelerates and decelerates

motor
– Stops the motor

• Positioning Module
– Sends differential positioning

information
– Programming proximity limits

Stepping
Motor

Positioning ModuleMotor Modulator

Controller

:Em-Stop

:Controller

:Modulator
:Position-Encoder

:Em-Stop

Fwd()/Rev()

Position ()

Stop ()

Stop ()

Nanbor Wang QoS-Aware CCM for DRE

• Ensure timely response
of “important” tasks
– Define unified view of

“importance”
• Portable Priority

Mapping
• Handle “important” tasks

first
– Preemptive task

scheduling
– Priority Model

• Reserve CPU resources
– Thread Pooling

• Separate traffic of
different importance
– Priority-Banded

Connection
– Private Connection

Types of Real-time Resources

Stepping
Motor

Positioning ModuleMotor Modulator

Controller

:Em-Stop

:Controller

:Modulator
:Position-Encoder

:Em-Stop

Fwd()/Rev()

Position ()

Stop ()

Stop ()

ORB ENDSYSTEM A

32767

0

R
TCO

R
B

A::Priority

255

0

0

31

Native Priority
N

ative Priority

ORB ENDSYSTEM B

SERVER_DECLARED
prio=200

SERVER_DECLARED
prio=200

CLIENT_PROPAGATED

CLIENT_PROPAGATED

Thread Pool w/ Lane

Lane
Prio = 100

Lane
Prio = 200

`

position()
stop()

ORB CORE

stop() position()

OBJ REF

prio
200

prio
100

Nanbor Wang QoS-Aware CCM for DRE

Review - RT Policies/Resources
• RT policies can associate with

objects of various granularities
– Client-side

1. ORB level
2. Thread level (RTCurrent)
3. Object level

– Server-side
1. ORB level
2. POA level
3. Object level

• Shared RT resources
– Shared by several POAs,

objects (Thread Pooling)
– ORB: certain protocol policies
– Priority-mapping

• Requires end-to-end
enforcement

• Results tightly coupled code Real-time CORBA leverages the CORBA
Messaging QoS Policy framework

Object Adapter

Object
(Servant)

in args
operation()

out args +
return

ORB CORE GIOP

Object
(Servant)

Client
OBJ
REF

OBJ
REF

1

3

1

2

3

3

3

Protocol Properties

OBJ
REF

Object
(Servant) POA B

POA A

Thread Pool w/ Lanes

Lane
Prio = 100

Lane
Prio = 200

2

233

Priority Mappings
Custom Protocols

Nanbor Wang QoS-Aware CCM for DRE

Insertion Points for RT Systemic Properties into CCM
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

1. Component
implementation

dependent
policies/

resources

2. Shared
logical

resources

3. Add/override
component

policies

3.1. Association
between

component
policies and
resources

4. Target platform
specific resource

allocations

Nanbor Wang QoS-Aware CCM for DRE

Application Development Revisited

Can we now program this with CIAO?

Instrument ClusterPositioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

LEDDisplay
Refresh

GetLocation

RateGen
Pulse

Rate

Collision

Detection
MyLocation

Refresh Ready

20Hz

5Hz

• Two parallel Two parallel Two parallel Two parallel
applicationsapplicationsapplicationsapplications
– GPS display

runs at higher
rates

– Collision
detection runs
at lower rates

• Collision detection Collision detection Collision detection Collision detection
requires immediate requires immediate requires immediate requires immediate
attentionattentionattentionattention

Nanbor Wang QoS-Aware CCM for DRE

CIAO Examples
Instrument ClusterPositioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

LEDDisplay
Refresh

GetLocation

RateGen
Pulse

Rate

Collision

Detection
MyLocation

Refresh Ready

20Hz

5Hz

SERVER_DECLARED-5

SERVER_DECLARED-10

SERVER_DECLARED-5

SERVER_DECLARED-10

prio: 5, prio-banded (5,10)

prio: 10, prio-banded (5,10)

Instrument ClusterPositioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

LEDDisplay
Refresh

GetLocation

RateGen
Pulse

Rate

Collision

Detection
MyLocation

Refresh Ready

20Hz

5Hz

CLIENT_PROPAGATED

SERVER_DECLARED-5

CLIENT_PROPAGATED

SERVER_DECLARED-5

With Thread_Pool and Priority-banded

SERVER_DECLARED-10

SERVER_DECLARED-10

Instrument ClusterPositioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
RefreshGPS

GPSLocation
RefreshCollision

CollosionDir

RateGen
Pulse

Rate

Collision

Detection
MyLocation

Refresh Ready

20Hz

5Hz

CLIENT_PROPAGATED

SERVER_DECLARED-5

CLIENT_PROPAGATED

SERVER_DECLARED-5

With Thread_Pool and Priority-banded

SERVER_DECLARED-10

SERVER_DECLARED-10

Nanbor Wang QoS-Aware CCM for DRE

CIAO Example - BoldStroke Configuration

RateGenerator:1@400MHz
HiResGPS: 40@400MHz
cockpitDisplay: 5@400MHz

RateGenerator→HiResGPS→
cockpitDisplay: 20
(not feasible on 200MHz CPU)

Deployment
(400MHz
CPU)

RateGenerator:1@400MHz
HiResGPS: 40@400MHz
cockpitDisplay: 5@400MHz

RateGenerator: {1,5,10,20,40}
HiResGPS: {x | x < 40}
cockpitDisplay: {y | y ≥≥≥≥ 5}

Packaging

WCET (in msec) Available Rates (in Hz)Config
Phase

RateGenerator:2@200MHz
HiResGPS: 80@200MHz
cockpitDisplay: 10@200MHz

RateGenerator→HiResGPS→
cockpitDisplay: 10
(not optimal on 400MHz CPU)

Deployment
(200MHz
CPU)

RateGenerator:1@400MHz
HiResGPS: 40@400MHz
cockpitDisplay: 5@400MHz

RateGenerator→HiResGPS→
cockpitDisplay: {10,20}

Assembly

Nanbor Wang QoS-Aware CCM for DRE

Summary of Meta-data for RT Policies
1. Component dependent

• Require RT ORB
• Priority model/default priority

level
2. Logical resources

• Thread pooling
• Priority-banded
• Custom protocol policy

3. Application assembly
• Container policy

(<homeplacement>)
• Priority model/priority level
• Association with (2)

• Component policy:
• Override priority

(SERVER_DECLARED)
• Priority-banded

• Connection policy:
• Priority-banded
• Request

_validate_connection ()

4. Application deployment
• Priority mapping
• Server protocol policy
• Client protocol policy

Nanbor Wang QoS-Aware CCM for DRE

Static QoS Provisioning in Component-Integrated ACE ORB (CIAO)

Client Component Server

Deployment
&

Configuration
Mechanism

Component Assembly

RT-ORB

in args

out args + return value

Operation ()

QoS
Mechanism

Plug ins

QoS
Mechanism

Plug ins

Client
Configuration

Aggregate

QoS
Adaptation

Container

CORBA
Component

Component
Home

Real-time POA

QoS Property
Adaptor

QoS Policies

R
ef

le
ct

QoS
Adaptation

QoS
Adaptation

QoS
Mechanism

Plug ins

Named
Policy

Aggregate

Named
Policy

Aggregate

Object
Reference

QoS
Adaptation

QoS
Mechanism

Plug ins

QoS Policies

Component Connection
Specifications

Component & Home ImplsTarget
Platform

QoS
Resource

Specification

• Extension to CCM
descriptors
– Component and

connection QoS
specifications

– ORB modules
– Adaptation modules

• QoS-enabled containers
• Policy-based adaptation

insertion
• Client-side policy aggregates
• Integrating RT-CORBA

Nanbor Wang QoS-Aware CCM for DRE

What is Dynamic QoS Management?

• MeasureMeasureMeasureMeasure (sensors) system
resource properties and
environmental conditions

• EvaluateEvaluateEvaluateEvaluate performance based
on specified QoS
requirements for the system

• AdaptAdaptAdaptAdapt application behavior to
meet QoS requirements
– Uses actuators to controlcontrolcontrolcontrol

behavior

Utility

Resources

“Broken” “Works”

Utility

Resources

“Broken” “Works”

Utility

Resources

“Working
Range”

Utility

Resources

“Working
Range”

Current Utility Curve

Desired
Utility Curve

Nanbor Wang QoS-Aware CCM for DRE

BBN’s QuO Add QoS Management to CORBA Middleware

Application
Developer

Mechanism
Developer

CLIENT

Network

operation()
in args

out args + return value

IDL
STUBS

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

C
O

R
B

A
 D

O
C

 M
O

D
E

L

• Plain CORBA
addresses only
application’s
functional
aspects

• QuO injects QoS
management

CLIENT

Delegate
Contract

SysCond

Contract

Network

MECHANISM/PROPERTY
MANAGER

operation()
in args

out args + return value

IDL
STUBS

Delegate

SysCond

SysCond

SysCond

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

Application
Developer

QuO
Developer

Mechanism
DeveloperQ

U
O

/C
O

R
B

A
 D

O
C

 M
O

D
E

L

• Measurement
• In-band: via Instrumentation
• Out-of-band: provided by syscond objects

• Adaptation
• In-band: via delegates and gateways
• Out-of-band: triggered by transitions in contract

regions

Mechanism
 DeveloperSpecialized ORBs or Services

Simple
Value

Measured
Value

(Sensor)

Composed
Value

Application
Developer

QoS
Developer

QuO Kernel

RSVP
Controller

Control
Value

Status
Value

CORBA Object
Device
Status

Service

Control
Value

Nanbor Wang QoS-Aware CCM for DRE

Packaging QoS Management into Components

• In-band QoS components
– QoS components are inserted between two application components, e.g.

C1 and C2
– QoS components expose delegate interfaces which intercept method

invocations for C1 and C2 and adds QoS adaptation behaviors for C1 and
C2

• Out-of-band QoS component
– QoS components contain system condition (syscond) objects which

measure system and application performance, and callbacks (actuators)
which trigger adaptive behaviors

C1 C2

qosket2qosket1

In-bandIn-band

out-of-bandA Prototypical
Approach

Nanbor Wang QoS-Aware CCM for DRE

Example of a Componentized Qosket
• A qosket component encapsulates

– Delegate interception interfaces
– Contract objects
– Syscond objects

• A qosket component interacts
internally with
– Other qosket components for

out-of-band control
– Component proxies for

accessing resource control
mechanisms

• Open questions
– Integration with event delivery

mechanisms
– Installation/connecting of

resource control mechanisms

Container
Boundary

qosket
comp

Delegate

QuO
Contract

Syscond

RSS
Proxy

QuO
Kernel

Component
Proxy

Resource
Control

Syscond
Syscond

In-band

out-of-band

Nanbor Wang QoS-Aware CCM for DRE

Composing Dynamic QoS Provisioning into CCM
• Container aspect hooks

provide fine grained
control for inserting QuO’s
delegates

• ORB configuration
mechanism can install
Qosket specific
mechanisms and
implementations

• Customized CCM
components can
implement QuO’s
contracts, SysConds, and
callbacks objects

Component Assembly

QoS Mechanism
Plug-ins

QoS Policies

Component
Connection

Specifications

QuO Mechanism/
property
Manager

Qosket
Implementation

QuO Helper
Methods

Component & Home Impls

QoS Adaptation
(Smart Proxies/

Interceptors)

QuO DelegateQuO DelegateQuO Delegate

Comp. Impl.

QuO
Callback
Objects

SysCond

ContractContract

SysCondSysCond

• Extend CIAO to insert Qosket
modules into applications
transparently

Nanbor Wang QoS-Aware CCM for DRE

CIAO’s Contributions: Total QoS Provisioning and Enforcement

QoS Provisioning
Static Dynamic

Ab
st

ra
ct

io
n M

id
dl

ew
ar

e
Pr

og
ra

m
m

in
g

La
ng

ua
ge

s

QoS-Enabled
Component
Middleware

(RTCCM-CIAO,
QoS EJB Containers)

Dynamic QoS
Provisioning
(QuO Qosket,
dynamicTAO)

Aspect-Oriented
Languages

(AspectJ,
AspectC++)

• Statically provision QoS resources end-to-end
• Monitor and manage QoS of the end-to-end

functional application interaction
• Enable the adaptive and reflective decision-

making for dynamic QoS provisioning
• Integration with MDA tools such as CoSMIC and

Cadena

QoS
Systemic Path

Operating System

Middleware

Sys
Condition

Mechanism & Properties
Manager

Applications

Operating System

QoS
Descriptions

Interceptor

Middleware

Applications

Local
Resource
Manage-

ment

InterceptorSys
Condition

Sys
Condition

Sys
Condition

QoS
Descriptions

} {

Endsystem Endsystem

Local
Resource
Manage-

ment

Functional Path

Infrastructure Middleware

Distribution Middleware

Common Services

Domain-Specific Services

Infrastructure Middleware

Distribution Middleware

Common Services

Domain-Specific Services

• Integrating CIAO
and Qosket covers
the QoS provisioning
at the middleware
level

• Separation of
functional and
systemic paths

