
July 6, 2003

Tutorial on
CORBA Component Model (CCM)

Nanbor Wang Craig Rodrigues

Washington University BBN Technologies
St. Louis

Nanbor Wang & Craig RodriguesTutorial on CCM

Overview
• The purpose of this tutorial is to

– present the motivation of CCM
– introduce features most relevant to distributed, real-time,

embedded applications
– present common patterns for implementing important

operations for CCM components
• but not to

– enumerate through all the mapping rules
– provide detailed references of all interfaces
– make you capable of implementing a CCM framework

Motivation for and Overview
of CORBA Component

Model

Nanbor Wang & Craig RodriguesTutorial on CCM

Where We Started From:
Object-Oriented Programming

• Object-Oriented programming simplified software
development through higher level abstractions (i.e.
associating related data and operations)

• Applying OO to network programming (Distributed Object
Computing, CORBA, RMI, etc.) simplified distributed systems
development

• We now have more robust software and more powerful
distributed systems

Nanbor Wang & Craig RodriguesTutorial on CCM

Motivations for Applying
OO to Network Programming

• Abstract away lower-level OS and protocol specific
details for network programming

• Create distributed systems which are easier to
model and build

• Result: robust distributed systems built with OO
middleware: CORBA, RMI, etc.

Nanbor Wang & Craig RodriguesTutorial on CCM

Overview of CORBA

Interface
Repository

IDL
Compiler

Implementation
Repository

Client OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII IDL
STUBS

ORB
INTERFACE

IDL
SKEL DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

• CORBA shields applications from heterogeneous platform dependencies
•e.g., languages, operating systems, networking protocols, hardware

• It simplifies development of
distributed applications by
automating/encapsulating

– Object location
– Connection & memory mgmt.
– Parameter (de)marshaling
– Event & request demultiplexing
– Error handling & fault tolerance
– Object/server activation
– Concurrency
– Security

•CORBA defines interfaces, not
implementations

Nanbor Wang & Craig RodriguesTutorial on CCM

Example: Applying OO to Network
Programming

• CORBA IDL specifies interfaces with operations
– interfaces map to objects in programming languages (C++,

Java)

– Operations in interfaces can be on local or remote objects

interface Foo {

void MyOp(in long arg);

};

class Foo : public virtual CORBA::Object {

virtual void MyOp(CORBA::Long arg);

};

IDL C++

Nanbor Wang & Craig RodriguesTutorial on CCM

Shortcomings of Traditional
OO-based CORBA Middleware?

• CORBA does not specify how “assembly” and “deployment” of object
implementations should be done to create larger applications
– Proprietary infrastructure and scripts are usually written to facilitate this

• CORBA IDL does not provide a way to logically group together related interfaces to
offer a specific service
– CORBA IDL does not offer such a feature, so such “bundling” must be done by

the developer

Interface
Design

Application
Development &

Deployment

IDL
Definitions

IDL
Compiler

Stubs
&

Skeletons

Object
Implementations

Language
Tools

Libraries

“Other”
Implementations

Applications

Nanbor Wang & Craig RodriguesTutorial on CCM

Boiler Plate X

Boiler Plate YBoiler Plate X

Caveat: Limitations of CORBA 2.x Specification
• Requirements of non-trivial

applications:
– Collaboration of multiple

objects and services
– Wide-spread deployment on

diverse platforms
• Limitations – Lack of standards

– Server configuration
– Object/service configuration
– Application configuration
– Object/service deployment

• Consequences – tight couplings
at various layers
– Brittle, non-scalable

implementation
– Hard to adapt and maintain
– Increase time-to-market

Server
ORB/POA

Obj
Impl

Obj
Impl

Obj
Impl

Server
ORB/POA

Obj
Impl

Obj
Impl

COS

Svc

Server
ORB/POA

Obj
Impl

Obj
Impl

COS

Svc

Client

CORBA BUS

in
vo

ke

C
o
n
f
i
g

C

C
o
n
f
i
g

B

C
o
n
f
i
g

A

Nanbor Wang & Craig RodriguesTutorial on CCM

The Emergence of Component Middleware

•Components give standard
mechanisms for “assembly” and
“deployment” of applications

•Components aggregate together
related interfaces into logical units
which are reusable

•Containers provide execution
environment for components

•Containers communicate via a
middleware bus

Middleware Bus

SecurityReplication NotificationPersistence

Container

… …

…

Nanbor Wang & Craig RodriguesTutorial on CCM

Stages of Component Development Lifecycle
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

Nanbor Wang & Craig RodriguesTutorial on CCM

The CORBA Component Model (CCM)

GIOP over VME

Component Server (Board 1)

Container Container

Replication
Manager Scheduler

CORBA Middleware Framework

Deployment
&

Configuration
Metadata

Component Server (Board 2)

Container Container

Replication
Manager Scheduler

CORBA Middleware Framework

Deployment
&

Configuration
Metadata

Backup
Configuration

Deployment
&

Configuration
Mechanism

Deployment
&

Configuration
Mechanism

Instrument
Cluster Airframe NAV Steering GPSRoute/

Terrain
Data Bank

Component
Assembly

• Supporting mechanisms
– Component Server: a generic server process

for hosting containers and components/homes
– Component Implemenation Framework:

automate the implementation of many
component features

– Packaging and Assembling tools: for
collecting implementations and configurations
information into deployable assemblies

– Deployment mechanism: automate the
deployment of component assemblies to
component servers

• Goals: Separating configuration concerns into
aspects:

– Server configuration
– Object/service configuration
– Application configuration
– Object/service deployment

Component Features

Nanbor Wang & Craig RodriguesTutorial on CCM

Interface and Component Designing Stage
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

Nanbor Wang & Craig RodriguesTutorial on CCM

Application Development via Composition
• Rate Generator

– Sends periodic “Pulse” events
to subscribers

• Positioning Sensor
– Refreshes cached

coordinates available thru
MyLocation facet

– Notifies subscribers via
“Ready” events

• Displaying Device
– Reads current coordinates via

its GPSLocation receptacle

– Updates display

NavDisplay
Refresh

GPSLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

Component Server

Rate
Generator

A typical use case for
industrial/automotive/avionics control

Positioning
Sensor

Displaying
Device

Nanbor Wang & Craig RodriguesTutorial on CCM

A CORBA Component
• Context: To support development via

composition
• Limitations of CORBA objects

– Merely identify interfaces
– No direct relation with reusable/deployable

implementations
• Goals

– Define a unit of reuse and
implementation

– Encapsulate an interaction and
configuration model

• A component is a new CORBA meta-type
– Extension of Object
– Has an interface, and an object

reference
• Could inherit from a single component type
• Could supports multiple interfaces

interface rate_control
{
void start ();
void stop ();

};

component RateGen
supports rate_control

{
};

interface RateGen :
Components::CCMObject,
rate_control

{
};

RateGen
Pulse

Rate

Nanbor Wang & Craig RodriguesTutorial on CCM

Managing Component Lifecycle

• Context:
– Components need to be created by the CCM run-time

• Problems:
– No standard way to manage component’s lifecycle
– Need standard mechanisms to strategize lifecycle management

• CCM Solution:
– Integrating Lifecycle service into component definitions
– Using different component home’s to provide different lifecycle

managing strategies

Nanbor Wang & Craig RodriguesTutorial on CCM

A CORBA Component Home

• “home” is a new CORBA meta-type
– Has an interface, thus is identified by object

reference
• Manages a unique component type

– More than one home type can manage the
same component type

– A component instance is managed by one
home instance

• Standard factory & finder operations
• Can have arbitrary user-defined operations

home RateGenHome
manages RateGen

{
factory create_pulser
(in rateHz r);

};

interface RateGenHomeExplicit :
Components::CCMHome

{
RateGen create_pulser
(in rateHz r);

};

interface RateGenHomeImplicit :
Components::KeylessCCMHome

{
RateGen create ();

};

interface RateGenHome :
RateGenHomeExplicit,
RateGenHomeImplicit
{};

RateGenHome

RateGen
PulseRate

A Quick Example

Nanbor Wang & Craig RodriguesTutorial on CCM

Component and Home for HelloWorld

interface Hello
{

void sayHello
(in string username);

};

component HelloWorld supports Hello
{
};

home HelloHome manages HelloWorld
{
};

• IDL Definitions for

• Component:
HelloWorld

• Managing home:
HelloHome

Nanbor Wang & Craig RodriguesTutorial on CCM

Client for HelloWorld Component
int

main (int argc, char *argv[])

{

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

CORBA::Object_var obj =
orb->resolve_initial_references ("NameService");

CosNaming::NamingContextExt_var nc =

CosNaming::NamingContextExt::_narrow (obj);

obj = nc->resolve_str ("HelloHome");

HelloHome_var hh = HelloHome::_narrow (obj);

HelloWorld_var hw = hh->create ();

hw->sayHello (“Simon”);

hw->remove ();

return 0;

}

1. Obtain object reference to
home

2. Create component

3. Invoke remote method

4. Remove component
instance

5. Clients don’t always
manage component
lifecycle directly

$>./hello-client

Hello World! -- from Simon.

More on
Component Features

Nanbor Wang & Craig RodriguesTutorial on CCM

Components Can Have Different Views
• Context:

– Components need to collaborate with several
different kinds of components/systems

– These collaborating components/systems may
understand different interface types

• Problems:
– Difficult to extend an interface
– No standard way to acquire new interfaces

• CCM Solution:
– Define facets, aka., provided interfaces

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Facets

• Component facets:
– Facets give offered

operation interfaces
– Specified with “provides”

keyword

interface position
{
long get_pos ();

};

component GPS
{
provides position

MyLocation;
…

};

interface GPS :
Components::CCMObject

{
position
provide_MyLocation ();

…
};

GPS

MyLocation

Refresh Ready

Nanbor Wang & Craig RodriguesTutorial on CCM

Using Other Components
• Context:

– Components need to collaborate with several
different kinds of components/systems

– These collaborating components/systems may
provide different types of interface

• Problems:
– No standard way to specify capability to handle, or

dependency to use other interfaces
– No standard way connect an interface to a

component

• CCM Solution:
– Define receptacles

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Receptacles

• Specifies a way to connect an
interface to this component

• Specified with “uses” keyword

component NavDisplay
{
…
uses position GPSLocation;
…
};

interface NavDisplay :
Components::CCMObject

{
…
void connect_GPSLocation (in position c);
position disconnect_GPSLocation();
position get_connection_GPSLocation ();
…
};

NavDisplay
Refresh

GPSLocation

Nanbor Wang & Craig RodriguesTutorial on CCM

Event Passing
• Context:

– Components may also communicate using
anonymous publishing/subscribing message passing
syntax

• Problems:
– Non-trivial to extend existing interface to support

event passing
– Standard CORBA Event Service is non-typed ! no

type-checking connecting publishers-consumers
– No standard way to specify component’s capability to

generate and process events

• CCM Solution:
– Standard eventtype/eventtype consumer interface
– Event sources
– Event sinks

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Events

• Events are IDL valuetypes
• Defined with the new eventtype

keyword

eventtype tick
{
public rateHz rate;

};

valuetype tick :
Components::EventBase

{
public rateHz rate;

};

interface tickConsumer :
Components::EventConsumerBase

{

void push_tick
(in tick the_tick);

};

RateGen
Pulse

Rate

Publisher Consumer

GPS

MyLocation

Refresh Ready

tick event

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Event Sources

• Event sources:
– Named connection points for event

production
– Two kinds: Publisher & Emitter

• publishes = multiple consumers
• emits = only one consumer

• Event delivery
– Consumer subscribes/connects directly
– Container mediates access to

CosNotification channels or other event
delivery mechanism

component RateGen
{
publishes tick Pulse;
emits tick trigger;
…

};

interface RateGen :
Components::CCMObject

{
Components::Cookie
subscribe_Pulse
(in tickConsumer c);

tickConsumer
unsubscribe_Pulse
(in Components::Cookie ck);

…
};

RateGen
Pulse

Rate

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Event Sinks

• Event sinks
– Named interface specifies which

events may be pushed
– Event sink can subscribe to

multiple event sources
– No distinction between emitter

and publisher

component NavDisplay
{
…
consumes tick Refresh;
};

interface NavDisplay :
Components::CCMObject

{

…
tickConsumer get_consumer_Refresh ();
…
};

NavDisplay
Refresh

GetLocation

Nanbor Wang & Craig RodriguesTutorial on CCM

The Need to Configure Components
• Context:

– To make component
implementations more adaptable,
components should be
reconfigurable

• Problems:
– Should not commit to a configuration

too early
– No standard way to specify

component’s configurable knobs
– Need standard mechanisms to

configure components
• CCM Solution:

– Use component attributes for
component configurations

– Configuration mechanisms VIDEO

Ethernet

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Attributes

• Named configurable properties
– Intended for component configuration

• e.g., optional behaviors, modality,
resource hints, etc.

– Could raise exceptions
– Exposed through accessors and

mutators

typedef unsigned long
rateHz;

component RateGen
supports rate_control

{
attribute rateHz Rate;

};

interface RateGen :
Components::CCMObject,
rate_control

{
attribute rateHz Rate;

};

RateGen
Pulse

Rate

Nanbor Wang & Craig RodriguesTutorial on CCM

Recap – Component Features
• IDL3 definition of a component from a

“client-view”
– What the component life cycle

operations are (i.e., home)
– What a component offers to other

components
– What a component requires from

other components
– What collaboration modes are used

between components
• Synchronous via operation

invocation
• Asynchronous via event notification

– Which component properties are
configurable

• Maps to “Equivalent IDL2 Interfaces”

Attributes

Event
Sinks

Facets

Re
ce

pt
ac

le
s

Ev
en

t
So

ur
ce

s
Component
Reference

Component
Home

O
ffered

P
orts

R
eq

ui
re

d
P

or
ts

Nanbor Wang & Craig RodriguesTutorial on CCM

Configuring and Connecting Components
• Context:

– Components need to be configured and connected together to
form application

• Problems:
– Components have different ports of different types and names
– Non-scalable to generate code to connect a specific set of

components

• CCM Solution:
– Provide introspection interface to discover component capability
– Provide generic port operations to compose/configure components

Nanbor Wang & Craig RodriguesTutorial on CCM

Generic Port Operations

• Generic ports operations for provides, uses, subscribes, emits, and
consumes.
– Apply the “Extension Interface Pattern”
– Used by deployment tools
– Light Weight CCM spec won’t include equivalent IDL2 operations

Generic Port Operations
(CCMObject)

Equivalent IDL2
Operations

Port

get_consumer (“name”);get_consumer_name();Event sinks

subscribe (“name”, c);

unsubscribe (“name”);

subscribe_name (c);

unsubscribe_name ();
Event sources
(publishes only)

connect (“name”, con);

disconnect (“name”);

connect_name (con);

disconnect_name ();
Receptacles

provide (“name”);provide_name ();Facets

Nanbor Wang & Craig RodriguesTutorial on CCM

Example of Connecting Components

NavDisplay
Refresh

GPSLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

Component Server

• Interface ! Receptacle
objref = GPS->provide

(“MyLocation”);

NavDisplay->connect
(“GPSLocation”,
objref);

• Event Source ! Event Sink
consumer = NavDisplay->
get_consumer (“Refresh”);

GPS->subscribe
(“Ready”,
consumer);

Component Runtime
Environment

Nanbor Wang & Craig RodriguesTutorial on CCM

Component
Server

CCM Server-side Features
• CCM is all about component –

server - application configuration

• CORBA 2.x specifications lack
higher level abstractions of
servant usage models

• Require programmatic
configuration (more often with
boiler plate-like code)

• Apply meta-programming
techniques
– Reusable run-time

environment
– Drop in and run
– Transparent to clients

Client

Nanbor Wang & Craig RodriguesTutorial on CCM

The Container Model
• A framework in component servers

• Built on the Portable Object
Adaptor

– Automatic activation / deactivation
– Resource usage optimization

• Provides simplified interfaces for
CORBA Services

– Security, transactions, persistence,
and events

• Uses callbacks for instance
management
– session states, activation,

deactivation, etc.

Container

ORB

CORBA
Component

Component
Home

POA

Transaction

Security Notification

Persistent State

E
xt

er
na

l
In

te
rfa

ce
s

Callback
Interfaces

Internal
Interfaces

Container

CORBA
Component

Component
Home

POA

E
xt

er
na

l
In

te
rfa

ce
s

Callback
Interfaces

Internal
Interfaces

Nanbor Wang & Craig RodriguesTutorial on CCM

Container Managed CORBA Policies
• Goal: decouple runtime configuration

from the component implementation
& configuration

• Specified by the component
implementors using XML-based
metadata

• Implemented by the container, not
the component

• CORBA Policy declarations defined
for:
– Servant Lifetime
– Transaction
– Security
– Events
– Persistence

SSL Container

CORBA
Component

Component
Home

POA

E
xt

er
na

l
In

te
rf

ac
es

Callback
Interfaces

Internal
Interfaces

 Transactional Container

CORBA
Component

Component
Home

POA
Ex

te
rn

al
In

te
rf

ac
es

Callback
Interfaces

Internal
Interfaces

Implementing CORBA
Components

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Implementation Stage
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

Nanbor Wang & Craig RodriguesTutorial on CCM

Requirements for Implementing Components

• Component implementations
need to support introspection,
navigation and manage
connections.

• Different implementation may
assume different run-time
requirements

• Different run-time requirements
use different container
interfaces

Component and home
Definitions

Component and home servants:

• Navigation interface operations
Receptacles interface operations
Events interface operations

• CCMObject interface operations
CCMHome interface operations

• Implied equivalent IDL2 port operations

• Application-related operations
(in facets, supported interfaces,
event consumers)

Nanbor Wang & Craig RodriguesTutorial on CCM

Difficulties with Implementing Components

Problem:
Generic lifecycle and
initialization server code
must be handwritten.
" Ad hoc design
" Code bloat
" No reuse

Stub
Files

Impl
Files

Generated Hand-Written

Skeleton
Files

Generates Inherits

Server

IDL Compiler

IDL File

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Implementation Framework (CIF)
• CIF defines rules and tools for

developing component
implementations
– Local executors

• Extends CCM-related
declarations in IDL files.

• Describes component
implementations.

• Automate most component
implementation

// RateGen.cidl

#include “RateGen.idl”

composition session RateGenImpl
{

home executor
RateGenHomeExec

{
implement RateGenHome;

manages RateGenExec;
};

};

RateGenHome servant

RateGen servant

RateGenHomeExec

RateGenExec

Manages

Nanbor Wang & Craig RodriguesTutorial on CCM

Facilitating Component Implementation
Solution: CIDL is part of CCM

strategy for managing
complex applications.
" Helps separation of

concerns.
" Helps coordination of tools.
" Increases the ratio of

generated to hand-written
code.

" Server code is now
generated, startup
automated by other CCM
tools.

Stub

Impl

Skel

IDL Compiler

IDL

CIDL

CIDL Compiler

Executor
 IDL

Servants

Executors

IDL Compiler

 XML
Component
Descriptors

uses

Nanbor Wang & Craig RodriguesTutorial on CCM

Connecting Components and Containers with CIDL
• CIDL compiler generates

infrastructure code which
connects together component
implementations and container
which hosts them

• Infrastructure code in container
intercepts invocations on
executors
for managing activation, security,
transactions, persistency, and so
on

• CIF defines “executor mappings”

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Examples on
Component

Implementations

Nanbor Wang & Craig RodriguesTutorial on CCM

Simple HelloWorld & HelloHome Executors

class HelloWorld_Impl
: public virtual CCM_HelloWorld,
public virtual CORBA::LocalObject

{
public:
HelloWorld_Impl () {}
~HelloWorld_Impl () {}

void sayHello (const char *username)
{
cout << “Hello World for ”

<< username
<< endl;

}
};

• Implements behaviors of
HelloWorld component

• Implement a lifecycle
management strategy of
HelloWorld component

interface Hello
{
void sayHello
(in string username);

};
component HelloWorld supports Hello
{};
home HelloHome manages HelloWorld
{};

class HelloHome_Impl
: public virtual CCM_HelloHome,
public virtual CORBA::LocalObject

{
public:
HelloHome_Impl () {}
~HelloHome_Impl () {}

Components::EnterpriseComponent_ptr
create ()
{
return new HelloWorld_Impl ();

}
};

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Entry Point Example

extern "C" {

Components::HomeExecutorBase_ptr
create_HelloHome ()
{

return new HelloHome_impl;
}

}

• Container calls this method to
create a home executor

• extern “C” required to prevent
C++ name mangling, so
function name can be
resolved in DLL

Nanbor Wang & Craig RodriguesTutorial on CCM

Implementing Ports Mechanisms

• Stuff that get invoked upon
– Facets
– Event sinks

• Stuff that the component invokes
– Receptacles
– Event sources

NavDisplay
Refresh

GPSLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

Component Server

Rate
Generator

Positioning
Sensor

Displaying
Device

Nanbor Wang & Craig RodriguesTutorial on CCM

Implementing Facets
interface position
{
long get_pos ();

};

component GPS
{
provides position

MyLocation;
…

};

interface GPS :
Components::CCMObject

{
position
provide_MyLocation ();

…
};

local interface GPS_Executor:
CCM_GPS,
CCM_position,
Components::SessionComponent

{
// Monolithic Executor Mapping

}

class GPS_Executor_Impl :
public virtual GPS_Executor,
public virtual CORBA::LocalObject

{
public:
…
virtual CCM_position_ptr
get_MyLocation ()
{ return this; }

virtual CORBA::Long
get_pos ()
{ return cached_current_location; }
…

};

GPS

MyLocation

Refresh Ready

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Event Sinks
• Event sinks

– Clients can acquire consumer
interfaces, similar to facets

– CIDL generates event consumer
servants

– Executor mapping defines push
operations directly

component NavDisplay
{
…
consumes tick Refresh;
};

interface NavDisplay :
Components::CCMObject

{

…
tickConsumer
get_consumer_Refresh ();
…
};

NavDisplay
Refresh

GetLocation
class NavDisplay_Executor_Impl :
public virtual CCM_NavDisplay,
public virtual CORBA::LocalObject

{
public:
…
virtual void push_Refresh (tick *ev)
{
this->refresh_reading ();

}
…

};

Nanbor Wang & Craig RodriguesTutorial on CCM

Initialize Component Specific Context
• Component-specific context manages

connections and subscriptions
• Container passes component its context via

either
– set_session_context
– set_entity_context

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

class GPS_Executor_Impl :
public virtual GPS_Executor,
public virtual CORBA::LocalObject

{
private:
CCM_GPS_Context_var context_;

public:
…
void set_session_context
(Components::SessionContext_ptr c)

{
this->context_ =
CCM_GPS_Context::narrow (c);

}
…

};

local interface GPS_Executor:
CCM_GPS,
CCM_position,
Components::SessionComponent

{
}

GPS

MyLocation

Refresh Ready

Nanbor Wang & Craig RodriguesTutorial on CCM

Using Receptacle Connections
• Component-specific context

manages receptacle
connections

• Executor acquires the
connected reference from the
context

component NavDisplay
{
…
uses position GPSLocation;
…
};

interface NavDisplay :
Components::CCMObject

{
…
void connect_GPSLocation (in position c);
position disconnect_GPSLocation();
position get_connection_GPSLocation ();
…
};

NavDisplay
Refresh

GPSLocation

class NavDisplay_Executor_Impl :
public virtual CCM_NavDisplay,
public virtual CORBA::LocalObject

{
public:
…
virtual void refresh_reading
(void) {
position_var cur =
this->context_->
get_connection_GPSLocation ();

long coord = cur->get_pos ();
…

}
…

};

Nanbor Wang & Craig RodriguesTutorial on CCM

Pushing Events from a Component
component RateGen
{
publishes tick Pulse;
emits tick trigger;
…

};

interface RateGen :
Components::CCMObject

{
Components::Cookie
subscribe_Pulse
(in tickConsumer c);

tickConsumer
unsubscribe_Pulse
(in Components::Cookie ck);

…
};

RateGen
Pulse

Rate

class RateGen_Executor_Impl :
public virtual CCM_RateGen,
public virtual CORBA::LocalObject

{
public:
…
virtual void send_pulse (void){
tick_var ev = new tick ();
this->context_->push_Pulse ();

}
…

};

• Component-specific context manages
consumer subscriptions (for
publishers) and connections (for
emitters)

• Component-specific context also
provides the event pushing operations
and relays events to consumers

Component Packaging, Assembly,
and Deployment

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Packaging Stage
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

• Packaging: bundling a component
implementation with associate
metadata

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Packages
• Goals

– Configure components, containers, servers
– Extract these aspects into metadata

• That’s a lot of stuff to be bundled together and moved
around

• “Classic” CORBA: No standard means of
– Configuration
– Distribution
– Deployment

• Packaging of components
– Components are packaged into a self-descriptive

package as a compressed archive
• XML descriptors provide metadata that describe

– The content of a package
– The capability of components
– The dependencies to other software artifacts

• Other components
• 3rd party DLLs
• Valuefactories

Packaging
Tool

Implementation

Component
Descriptor

Default Properties

Home Properties

softpkg
Descriptor

CORBA

Package

CORBA
Component

Package

packager

Nanbor Wang & Craig RodriguesTutorial on CCM

Application Assembling Stage
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

• Assembly: A collection of components
packages and metadata that specify the
composition of an application

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Assembling
• Goals

– Configure components, containers,
servers, and applications

– Extract these aspects into metadata
– Provide higher level of modeling

• “Classic” CORBA: No standard means of
– Configuration
– Distribution
– Deployment

• An assembly descriptor specifies:
– Component implementations
– Component/home instantiations
– InterconnectionsProperties Deployment

Tool

Assembly
Archive

.aar (ZIP)

Assembly/
Packaging

Tool

Component
Package

Component
Package

Component
Package

Port
Connections

Instance
Creation

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Implementation Specifications

<!– Assembly descriptors associate components with implementations -->
<!- in software packages defined by softpkg descriptors (*.csd) files -->
<componentfiles>

<componentfile id=“com-RateGen">
<fileinarchive name=“RateGen.csd"/>

</componentfile>

<componentfile id=“com-GPS">
<fileinarchive name=“GPS.csd"/>

</componentfile>

<componentfile id=“com-Display">
<fileinarchive name=“NavDisplay.csd"/>

</componentfile>

</componentfiles>

navDisplay
Refresh

GPSLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

Rate
Generator

Positioning
Sensor

Displaying
Device

Nanbor Wang & Craig RodriguesTutorial on CCM

Component Home/Instances Installation Specifications
<!– Instantiating component homes/instances -->

<partitioning>
<hostcollocation>

...

<homeplacement id=“a_RateGenHome">
<componentfileref idref=“com-RateGen"/>
<componentinstantiation id=“a_RateGen">

<componentproperties>
<fileinarchive name=“NavRateGen.cpf"/>

</componentproperties>
</componentinstantiation>

</homeplacement>
...
<destination>A_Remote_Host</destination>

</hostcollocation>
</partitioning>

• An assembly
descriptor specifies
how & where homes
& components should
be instantiated

• A component
property file (.cpf) can
be associated with a
home or a
component
instantiation to
override default
component properties

Nanbor Wang & Craig RodriguesTutorial on CCM

Interconnection Specification
<connections>
...
<connectinterface>

<usesport>
<usesidentifier>GPSPosition</usesidentifier>
<componentinstantiationref idref=“a_NavDisplay"/>

</usesport>
<providesport>

<providesidentifier>
MyLocation

</providesidentifier>
<componentinstantiationref idref=“a_GPS"/>

</providesport>
</connectinterface>
<connectevent>

<consumesport>
<consumesidentifier>Refresh</consumesidentifier>
<componentinstantiationref idref=“a_GPS"/>

</consumesport>
<publishesport>

<publishesidentifier>
Pulse

</publishesidentifier>
<componentinstantiationref

idref=“a_RateGen"/>
</publishesport>

</connectevent>
...

</connections>

• Assembly descriptors also
specify how component
instances are connected
together

navDisplay
Refresh

GPSLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

Rate
Generator

Positioning
Sensor

Displaying
Device

Nanbor Wang & Craig RodriguesTutorial on CCM

Two Deployment Examples

Instrument Cluster

Positioning Unit

GUIDisplay
Refresh

GPSLocation

LEDDisplay
Refresh

GetLocation

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

Instrument ClusterPositioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

• Making configuring, assembling, &
deploying of applications easy

• Component configurations
• Component implemenations
• Inter-connections
• Logical location constraints

RemoteDisplayGUI.cad

DuelDisplay.cad

Nanbor Wang & Craig RodriguesTutorial on CCM

Deployment Stage
Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL
Definitions

Stubs
&

Skeletons

Object
Implementations

Running
Applications

Component
IDL

Definitions

IDL
Compiler

CIDL
Compiler

Component
CIDL

Definitions

Servants,
Executors,
Contexts

Language
Tools

Component
DLLs

XML
Component &

Home Properties

XML
Component
Descriptors

(.ccd)

Packaging
Tools

Component
Packages
(Zipped
archives

*.car)

Assembling
Tools

XML
Component &

Home Properties

Assembly
Packages
(Zipped
archives

*.aar)

XML
Softpkg

Descriptors
(.csd)

XML
Assembly

Descriptors
(.cad)

Deployment
Tools

Target Platform
Properties

Component
Configurations

• Deploy: Realization of a single component
or an assembly specification

Nanbor Wang & Craig RodriguesTutorial on CCM

Application Deployment
• Deployment tools

– Have knowledge of target
platforms

– Map locations in assembly
to physical nodes

– Manage available resources
for applications

– Use standard CCM
interfaces defined in module
Components::Deployment

to realize an assembly

Client

Middleware Bus

Platform/
Resource

Configuration

System Development

Field Radar
Control
System

Real-Time
Flight
Status

Data
CenterComponent

Assembly

Flight
Scheduling

Airport
Approach
Control

Component
Repository

Deploy:
Installation

Instantiation
Interconnection

Where Do We Go from Here?

Nanbor Wang & Craig RodriguesTutorial on CCM

Summary
• The CORBA Component Model

– Extend CORBA object model to support application development via
composition

– CIF defines ways to automate the implementation of many
component features

– Defines standard runtime environment with Containers and
Component Servers

– Specifies packaging and deployment framework

• Separating configuration concerns
– Server configuration
– Object/service configuration
– Application configuration
– Object/service deployment

Nanbor Wang & Craig RodriguesTutorial on CCM

CCM Status
• Available CCM Implementations

– Component Integrated ACE ORB (CIAO) by Washington University
and Vanderbilt University

– Enterprise Java CORBA Component Model (EJCCM) by
Computational Physics, Inc.

– K2 CCM by iCMG (commercial product)
– MICO CCM by Frank Pilhofer
– QoS Enabled Distributed Object (Qedo) by FOKUS
– OpenCCM by ObjectWeb (Java based)

• Modeling and Assembling tools
– Cadena from Kansas State University
– GME from ISIS, Vanderbilt University

Nanbor Wang & Craig RodriguesTutorial on CCM

CCM Related Specifications
• Light Weight CCM hosted by RTESS

– realtime/03-05-05
• QoS for CCM RFP hosted by MARS

– mars/03-06-12
• Stream for CCM RFP hosted by MARS

– mars/03-06-11
• UML Profile for CCM hosted by MARS

– mars/03-05-09
• Deployment and Configuration hosted by MARS

– ptc/03-06-03

• CCM for distributed, real-time and embedded applications
– CIAO and Qedo
– Light weight CCM

