OMG Smart Transducer Specification (I)

H. Kopetz
TU Wien
July 2003
The Time-Triggered Architecture

Take *Time* from the Problem Domain

And move it into the Solution Domain
Basic Concepts

• RT System Requirements
• Model of Time
• Model of a Component
• Temporal Accuracy
• Interfaces
When is a Computer System ‘Real-Time’?

A real-time computer system is a computer system in which the correctness of the system behavior depends not only on the logical results of the computations, but also on the physical time, when these results are produced.

The point in time when a result has to be produced is called a deadline.

Deadlines are dictated by the environment of the real-time computer system.
Some Definitions

If the result has utility even after the deadline, we call the deadline *soft*. Systems with soft deadlines are not the focus of these lectures.

If the result has no utility after the deadline has passed, the deadline is called *firm*.

If a catastrophe could result if a strict deadline is missed, the deadline is called *hard*.

A real-time computer system that has to meet at least one hard deadline is called a *hard real-time system*.

Hard- and soft real-time system design are fundamentally different.
Hard Real Time versus Soft Real Time

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hard Real Time</th>
<th>Soft Real Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time</td>
<td>hard</td>
<td>soft</td>
</tr>
<tr>
<td>Pacing</td>
<td>environment</td>
<td>computer</td>
</tr>
<tr>
<td>Peak-Load Perform.</td>
<td>predictable</td>
<td>degraded</td>
</tr>
<tr>
<td>Error Detection</td>
<td>system</td>
<td>user</td>
</tr>
<tr>
<td>Safety</td>
<td>critical</td>
<td>non-critical</td>
</tr>
<tr>
<td>Redundancy</td>
<td>active</td>
<td>standby</td>
</tr>
<tr>
<td>Time Granularity</td>
<td>millisecond</td>
<td>second</td>
</tr>
<tr>
<td>Data Files</td>
<td>small/medium</td>
<td>large</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>short term</td>
<td>long term</td>
</tr>
</tbody>
</table>
A system is *fail-safe* if there is a safe state in the environment that can be reached in case of a system failure, e.g., ABS, train signaling system. In a fail-safe application the computer has to have a high *error detection coverage*. Fail safeness is a characteristic of the application, not the computer system.

A system is *fail operational*, if no safe state can be reached in case of a system failure, e.g., a flight control system aboard an airplane. In fail-operational applications the computer system has to provide a minimum level of service, even after the occurrence of a fault.
A rare event is an important event that occurs very infrequently during the lifetime of a system, e.g., the rupture of a pipe in a nuclear reactor.

A rare event can give rise to many correlated service requests (e.g., an alarm shower).

In a number of applications, the utility of a system depends on the predictable performance in rare event scenarios, e.g. flight control system.

In most cases, workload testing will not cover the rare event scenario.
Example of a Distributed System

- Communication Network Interface (CNI) within a node
- I/O Interface
- Driver Interface
- Assistant System
- Gateway Body
- Communication System

CC: Communication Controller

© H. Kopetz 06/07/2003

Introduction
Some Important Concepts in Relation to Time

We assume a (dense) Newtonian time in the environment.

Instant: cut of the timeline

Duration: interval on the timeline

Event: occurrence at an instant--has no duration

Omniscient Observer: has a reference clock that is in perfect synchrony with Atomic Time

Absolute Timestamp: Timestamp generated by the reference clock
Global Sparse Time Base

It is assumed that within the distributed system a global time of known precision π is available at every node. The global time is used to build a sparse time base as follows:

Events are only allowed to occur at subintervals of the timeline.
What is a “Component”?

In our context, a *component* is complete computer system that is time aware. It consists of

♦ The hardware
♦ The system and application software
♦ The internal state

The component interacts with its environment by the exchange of messages via interfaces.

What is a *software* component?
Closed Component vs. Open Component

♦ **Closed Component:** Contains no local interface to the *real world*, but can contain local interfaces to other closed components. *Semi-closed* if it is time-aware.

♦ **Open Component:** Contains an interface to the *real world*. *Semi-open* if no control signals are accepted from the real-world (e.g., a sampling system).

The real world has an unbounded number of properties.
Message: An atomic data structure that is formed for the purpose of communication among nodes

Message Send Instant: The instant when the sending of a message starts at the sender

Message Receive Instant: The instant when the receiving of a message terminates at the receiver

State Message: A (periodic) message that contains state information. Non consumable read at sender and update in place semantics at receiver.

Event Message: A message that contains event information. Consumed on reading and queued at receiver
Model of a Component–Messages

- Input
- h-state
- computation
- Start
- End
- Output
Message Classification

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Explanation</th>
<th>Antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>valid</td>
<td>A message is valid if its checksum and contents are in agreement.</td>
<td>invalid</td>
</tr>
<tr>
<td>checked</td>
<td>A message is checked at source (or, in short, checked) if it passes the output assertion.</td>
<td>not checked</td>
</tr>
<tr>
<td>permitted</td>
<td>A message is permitted with respect to a receiver if it passes the input assertion of that receiver.</td>
<td>not permitted</td>
</tr>
<tr>
<td>timely</td>
<td>A message is timely if it is in agreement with the temporal specification</td>
<td>untimely</td>
</tr>
<tr>
<td>value-correct</td>
<td>A message is value-correct if it is in agreement with the value specification</td>
<td>not value-correct</td>
</tr>
<tr>
<td>correct</td>
<td>A message is correct if it is both timely and value-correct.</td>
<td>incorrect</td>
</tr>
<tr>
<td>insidious</td>
<td>A message is insidious if it is permitted but incorrect</td>
<td>not insidious</td>
</tr>
</tbody>
</table>
History State (h-state)

The h-state comprises all information that is required to start an “empty” node (or task) at a given point in time:

♦ Size of the h-state depends on the point in time chosen
♦ relative minimum immediately after a computation (an atomic action) has been completed.
♦ System in ground state: no messages in transit and no activity occurring.
♦ shall be small at reintegration points.

If no h-state has to be stored between successive activations of the node, the node is called “stateless” (at the chosen level of abstraction!).
Ground State (g-state)

g-state: Minimal h-state of a subsystem (node) where tasks are inactive and all channels are flushed. Needed for reintegration of nodes.
Temporal Requirements

Timeliness: An output message must be submitted to the environment at the specified instant (deadline).

Temporal accuracy of real-time data: The data elements that are used in a time-sensitive operation must be temporally accurate.

Minimal Jitter: The variability between a stimulus and a response should be as small as possible.

Jitter: The difference between maximum and minimum latencies
Validity of Real-Time Information

How long is the observation:

“The traffic light is green”

temporally accurate?

Temporal parameters are associated with real-time data.
RT Entities, RT Images and RT Objects

Operator

Distributed Computer

Control Object

- RT Entity
- RT Image
- RT Object

A: Measured Value of Flow
B: Setpoint for Flow
C: Intended Valve Position
A Real-Time (RT) Entity is a state variable of interest for the given purpose that changes its state as a function of real-time. We distinguish between:

- Continuous RT Entities
- Discrete RT Entities

Examples of RT Entities:
- Flow in a Pipe (Continuous)
- Position of a Switch (Discrete)
- Setpoint selected by an Operator
- Intended Position of an Actuator
Sphere of Control

Every RT-Entity is in the Sphere of Control (SOC) of a subsystem that has the authority to set the value of the RT-entity:

♦ Setpoint is in the SOC of the operator
♦ Actual Flow is in the SOC of the control object
♦ Intended Valve Position is in the SOC of the Computer

Outside its SOC a RT-entity can only be observed, but not modified.

At this level of abstraction, changes in the representation of a RT-entity are not significant.
Observation

Information about the state of a RT-entity at a particular point in time is captured in an observation. An observation is an atomic triple

Observation = <Name, Time, Value>

consisting of:

♦ The name of the RT-entity
♦ The point in real-time when the observation has been made
♦ The values of the RT-entity

Observations are transported in messages.
State and Event Observation

An observation is a state observation, if the value of the observation contains the full or partial state of the RT-entity. The time of a state observation denotes the point in time when the RT-entity was sampled.

An observation is an event observation, if the value of the observation contains the difference between the “old state” (the last observed state) and the “new state”. The time of the event information denotes the point in time of the L-event of the “new state”.

© H. Kopetz 06/07/2003
RT Images

A RT-Image is a picture of a RT Entity. A RT image is valid at a given point in time, if it is an accurate representation, both in the domains of value and time, of the corresponding RT Entity.

RT-Images

♦ are only valid during a specified interval of real-time.
♦ can be based on an observation or on a state estimation.
♦ can be stored in data objects, either inside a computer (RT object) or outside in an actuator.
RT Object

A RT-object is a “container” for a RT-Image or a RT-Entity in the Computer System.

A RT-object k

- has an associated real-time clock which ticks with a granularity t_k. This granularity must be in agreement with the dynamics of the RT-entity this object is to represent.
- Activates an object procedure if the time reaches a preset value.
- If there is no other way to activate an object procedure than by the periodic clock tick, we call the RT-object a *synchronous* RT object.
Temporal Accuracy (II)

The temporal accuracy of a RT image is defined by referring to the recent history of observations of the related RT entity. A recent history RHᵢ at time tᵢ is an ordered set of time points <tᵢ, tᵢ₋₁, tᵢ₋₂, . . . , tᵢ₋ₖ>, where the length of the recent history

\[d_{acc} = tᵢ - tᵢ₋ₖ \]

is called the temporal accuracy. Assume that the RT entity has been observed at every time point of the recent history. A RT image is temporally accurate at the present time tᵢ if

\[\exists tⱼ ∈ RHᵢ: Value(RTimageᵢ) = Value(RTentityᵢ) \]
Temporal Accuracy of an RT Object

If a RT-object is updated by observations, then there will always be a delay between the state of the RT entity and that of the RT object.
Hidden Channel (2)

1 Sending of M_{BC}
2 Sending of M_{BA}
3 Arrival of M_{BC}
4 Arrival of M_{DA}
5 Arrival of M_{BA}
6 Permanence of M_{DA}

1 Sending of hidden channel
2 Arrival of hidden channel
3 Sending of M_{DA}
4 Arrival of M_{DA}
5 Arrival of M_{BA}
6 Permanence of M_{DA}

\(d_{\text{min}} \) hidden channel interval of incorrect alarm \(d_{\text{max}} \) Real Time
Permanence

Permanence is a relation between a given message M_i that has arrived at a RT-object O and all messages M_{i-1}, M_{i-2}, \ldots that have been sent to this object before (in the temporal order) message M_i.

The message M_i becomes *permanent* at object O as soon as all previously sent messages have arrived at O.

If actions are taken on non-permanent messages, then an inconsistent behavior may result.

The *action delay* is the interval between the point in time when a message is sent by the sender and the point in time when the receiver knows that the message is permanent.

How long does it take until a message becomes permanent?
Action Delay

In distributed RT systems without a global time base the maximum action delay:

$$d_{\text{max}} + \varepsilon = 2 d_{\text{max}} - d_{\text{min}}$$

but the consistent order problem is not yet solved!

In systems with a global time the maximum action delay: $d_{\text{max}} + 2g$

In distributed real time system the maximum protocol execution time and not the “median” protocol execution time determines the responsiveness.
Jitter at the Application Level

Observation of the Controlled Object → Jitter: Variability of the Delay → Delay → Output → Real-Time
Most of the time, the system will operate correctly.

Application specific critical jitter value

System operates correctly

System Failure

Length of Jitter

Probability Density

$\min d$ $\max d$
The Effect of Jitter: Measurement Error

Value V

Additional Measurement Error ΔV
caused by the Jitter Δd

$\Delta V = \frac{dV(t)}{dt} \Delta d$

Jitter in Control Loops causes a degradation of control quality.
The Effect of Jitter: Orphans

Request Response Transaction between a Client and a Server:

How large is d_{max}?
It is not contained in the interface specification, available at the sub-supplier.
A critical instant is a point in time, when all hosts in the ECUs try to send a message simultaneously. There is no phase control possible in ET system.

The message at the lowest priority level must wait until all higher priority messages have been sent (assume that all messages have the same length).

Protocol execution time at critical instant (n ECUs):

\[d_{\text{max}} = n \ d_{\text{trans}} \]

Protocol execution time if the channel is free:

\[d_{\text{min}} = \ d_{\text{trans}} \]

Jitter of the lowest priority message:

\[Jitter = (n-1) \ d_{\text{trans}} \]

The jitter depends on the number of ECUs in the system.
Summary: Jitter is Bad

The consequences of a long jitter:
- Measurement error increases
- Probability of Orphans
- Action Delay increases
- Clock Synchronization difficult
Real-Time Transaction

Man Machine Interface (MMI)

RT Transaction between Sensor and Actuator

Real-Time Bus

© H. Kopetz 06/07/2003
Rolling Mill Example

An alarm monitoring component should raise an alarm

\[
\text{WHEN } p_1 < p_2 \text{ THEN raise alarm;}
\]

At a first glance, this specification of an alarm condition looks reasonable. A further analysis leads to the following open questions:

♦ What is the maximum \(p_1 \) and \(p_2 \) ?
♦ At what points in time must the alarm condition be evaluated?
Logical versus Temporal Control

The control scheme determines at what point in time the execution of a selected action will start. In RT systems it is necessary to distinguish between:

- **Logical Control** is concerned with the control flow within a task to realize the specified data transformation.

- **Temporal Control** is concerned with the point in time when a task is to be started or when it has to be preempted by a more urgent task. Temporal control is closely related to scheduling.
Synchronous Programming Languages

In the past twenty years, synchronous programming languages have been developed that distinguish clearly between *temporal control* and *logical control*:

- Initialize Memory
- For each clock tick (or input event) do
 - Read Inputs
 - Compute Outputs
 - Update Memory

LUSTRE: Used for the development of the flight critical control software in Airbus planes

ESTEREL: Used in telecommunication

Ref: Beneviste, A et. Al.: The Synchronous Languages, Twelve years later

Proc. of the IEEE Vol 91, Nr. 1, Jan 2003, p. 64-84
Interface: A point of interaction between a system and its environment

Linking Interface: An interface of a component through which it is connected to other components.

Service Providing LIF (SPLIF or LIF, for short): A LIF where the real-time service of a component is provided to its environment

Service Requesting LIF (SRLIF): A LIF where a service is requested from another component

Interface Model: The model of the concepts a user has in mind when he/she relates the meaning of the chunks of information in a message to his/her conceptual world.
Interfaces of a Node--Messages

Diagnostic and Management Interface
(Boundary Scan in Hardware Design)

Local Interfaces
SRLIF

Application Software

Linking Interface (SPLIF or LIF)
Relevant for Composability

Configuration Planning Interface
The Three Interfaces

The three interfaces of an embedded system node:

Realtime Service (RS) Interface--LIF:
- In control applications periodic
- Contains RT observations
- Time sensitive

Diagnostic and Maintenance (DM) Interface:
- Sporadic access
- Requires knowledge about internals of a node (Restrictions in order to protect IP)
- Not time sensitive

Configuration Planning (CP) Interface:
- Sporadic access
- Used to install a node into a new configuration
- Not time sensitive
SPLIF or LIF is Important for Composability

For the temporal composability, only the LIF interface is relevant. An LIF (e.g., a control algorithm) must specify:

♦ At what point in time the input information is delivered to a module (temporal pre-conditions)

♦ At what point in time the output information must be produced by the module (temporal post-conditions).

♦ The properties of the intended information transformation provided by the module (a proper model)

Focus on Message Based Interfaces!
A Composition Involving three LIFs

Linking Interfaces
Four Principles of Composability (LIF)

(1) **Independent Development of the Components** (Architecture)
 The message interfaces of the components must be *precisely specified* in the value domain and in the *temporal domain* in order that the component systems can be developed in isolation.

(2) **Stability of Prior Services** (Component Implementation)
 The prior services of the components must be maintained after the integration and should not fail if a partner fails.

(3) **Performability of the Communication System** (Comm. System)
 The communication system transporting the messages must meet the given temporal requirements under all specified operating conditions.

(4) **Replica Determinism** (Architecture)
 Replica Determinism is required for the transparent implementation of fault tolerance.
The LIF Specification hides the Implementation
Views of a System: Four Universe Model

<table>
<thead>
<tr>
<th>User Level</th>
<th>Meaning of Data Types</th>
<th>Meta-level Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Interpretation by the User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operational Interface Specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value and Temporal</td>
</tr>
<tr>
<td>Informational Level</td>
<td>Data Types</td>
<td></td>
</tr>
<tr>
<td>Logical Level</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>Physical Level</td>
<td>Analog Signals</td>
<td></td>
</tr>
</tbody>
</table>
Interface Specification

Operational Specification:
- **Operational Input Interface Specification**
 - Syntactic Specification
 - Temporal Specification
 - Input Assertion
- **Operational Output Interface Specification**
 - Syntactic Specification
 - Temporal Specification
 - Output Assertion
- **Interface State**

Meta-level Specification:
- Meaning of the data elements: Means-and-ends model
Composability in Distributed Systems

Interface Specification
A

Communication System
Delay, Dependability

Interface Specification
B
A Component may support many LIFs
Property Mismatches at Interfaces

<table>
<thead>
<tr>
<th>Property</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical, Electrical Line</td>
<td>Line interface, plugs, Communication protocol CAN versus J1850</td>
</tr>
<tr>
<td>Communication protocol</td>
<td></td>
</tr>
<tr>
<td>Syntactic</td>
<td>Endianness of data</td>
</tr>
<tr>
<td>Flow control</td>
<td>Implicit or explicit, Information push or pull</td>
</tr>
<tr>
<td>Incoherence in naming</td>
<td>Same name for different entities</td>
</tr>
<tr>
<td>Data representation</td>
<td>Different styles for data representation</td>
</tr>
<tr>
<td></td>
<td>Different formats for date</td>
</tr>
<tr>
<td>Temporal</td>
<td>Different time bases</td>
</tr>
<tr>
<td></td>
<td>Inconsistent time-outs</td>
</tr>
<tr>
<td>Dependability</td>
<td>Different failure mode assumptions</td>
</tr>
<tr>
<td>Semantics</td>
<td>Differences in the meaning of the data</td>
</tr>
</tbody>
</table>
Boundary Line versus Interface System (IS)

Subsystem A

BL

Subsystem B

Subsystem A

BL

IS

BL

Subsystem B
Distributed Interface File

Component A

Communication System

Interface Component (may be empty)

Component B
Elementary vs. Composite Interface

Consider a **unidirectional data flow** between two subsystems (e.g., data flow from sensor node to processing node).

We distinguish between:

Elementary Interface:
- Sender
- Receiver

Composite Interface:
- Sender
- Receiver

A composite Interface introduces a control dependency between the Sender and Receiver and thus compromises their independence.

Example:
- State message in a DPRAM
- Queue of event messages
Consider a **unidirectional data flow** between two subsystems (e.g., data flow from sensor node to processing node).

We distinguish between:

Elementary Interface:
- Sender
- Receiver

Composite Interface:
- A composite Interface introduces a control dependency between the Sender and Receiver and thus compromises their independence.

Example:
- State message in a DPRAM
- Queue of event messages

A composite Interface introduces a control dependency between the Sender and Receiver and thus compromises their independence.
Information Push Interface: Information producer pushes information on information consumer (e.g., telephone, interrupt)

Information Pull Interfaces: Information consumer requests information when required (e.g., email).

What is better in real-time systems?--For whom?
Unidirectional Information Transfer

Event-Message- Event Triggered:

<table>
<thead>
<tr>
<th>Sender Task</th>
<th>CNI Queue</th>
<th>Receiving Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Push</td>
<td>Information Push</td>
<td>Information Push</td>
</tr>
</tbody>
</table>

State Message- Time Triggered:

<table>
<thead>
<tr>
<th>Sender Task</th>
<th>CNI DPRAM</th>
<th>Receiving Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Push</td>
<td>Information Pull</td>
<td></td>
</tr>
</tbody>
</table>

- **Control** (-----)
- **Data** (->)

© H. Kopetz 06/07/2003
A good interface within a distributed real-time system

- is *precisely* specified in the value domain and in the temporal domain,
- provides the relevant abstractions of the interfacing subsystems and hides the irrelevant details,
- leads to minimal coupling between the interfacing subsystems,
- limits error propagation across the interface,
- Conforms to the established architectural style and thus introduces *structure* into a system.