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The Time-Triggered Architecture

Take Time from the Problem Domain

And move it into the Solution Domain 
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Basic Concepts

•RT System Requirements

•Model of Time

•Model of a Component

•Temporal Accuracy

•Interfaces
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When is a Computer System ‘Real-Time’?

A real-time computer system is a computer system in which 
the correctness of the system behavior depends not only on 
the logical results of the computations, but also on the 
physical time, when these results are produced.
The point in time when a result has to be produced is called a 
deadline.
Deadlines are dictated by the environment of the real-time 
computer system.
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Some Definitions

If the result has utility even after the deadline, we call the 
deadline soft.  Systems with soft deadlines are not the focus 
of these lectures.
If the result has no utility after the  deadline has passed, the
deadline is called firm.
If a catastrophe could result if a strict deadline is missed, the 
deadline is called hard.
A real-time computer system that has to meet at least one hard 
deadline is called a hard real-time system.
Hard- and soft real-time system design are fundamentally 
different.
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Hard Real Time versus Soft Real Time

Characteristic Hard Real Time Soft Real Time
Response time hard soft
Pacing environment computer
Peak-Load Perform. predictable degraded
Error Detection system user
Safety critical non-critical
Redundancy active standby
Time Granularity millisecond second
Data Files small/medium large
Data Integrity short term long term
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Fail-Safe versus Fail-Operational

A system is fail-safe if there is a safe state in the environment 
that can be reached in case of a system failure, e.g., ABS, train 
signaling system.
In a fail-safe application the computer has to have a high error 
detection coverage.
Fail safeness is a characteristic of the application, not the 
computer system.
A system is fail operational, if no safe state can be reached in 
case of a system failure,e.g., a flight control system aboard an
airplane. 
In fail-operational applications the computer system has to 
provide a minimum level of service, even after the occurrence 
of a fault.
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Predictability in Rare Event Situations

A rare event is an important event that occurs very 
infrequently during the lifetime of a system, e.g., the rupture 
of a pipe in a nuclear reactor. 
A rare event can give rise to many correlated service requests 
(e.g., an alarm shower).
In a number of applications, the utility of a system depends on 
the predictable performance in rare event scenarios, e.g. flight
control system
In most cases, workload testing will not cover the rare event 
scenario.
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Example of a Distributed System
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Some Important Concepts in Relation  to Time

We assume a (dense)  Newtonian time in the environment.
Instant:  cut of the timeline
Duration:  interval on the timeline
Event:  occurrence at an instant--has no duration

Omniscient Observer:  has a reference clock that is in perfect
Synchrony with Atomic Time
Absolute Timestamp: Timestamp generated by the reference clock

Real Time
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Global Sparse Time Base

It is assumed that within the distributed system a global time 
of known precision π is available at every node. 
The global time is used to build a sparse time base as 
follows: 

0 1 2 3 4 5 6 7 8 9

Time

Events       are only allowed to occur at subintervals of the timeline

∆∆∆∆ ππππ∆∆∆∆ ππππππππ
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What is a “Component”?

In our context, a component is complete computer system that 
is time aware.  It consists of
♦ The hardware
♦ The system and application software
♦ The internal state 

The component interacts with its environment by the 
exchange of messages via interfaces.
What is a software component?  
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Closed Component vs. Open Component

♦ Closed Component: Contains no local interface to the 
real world, but can contain local interfaces to other closed 
components. 
Semi-closed if it is time-aware.

♦ Open Component: Contains an interface to the real 
world. 
Semi-open if no control signals are accepted from the real-
world  (e.g., a sampling system).

The real world has an unbounded number of properties.
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Message-Model–Appropriate Abstraction

Message: An atomic data structure that is formed for the 
purpose of communication among nodes
Message Send Instant: The instant when the sending of a 
message starts at the sender
Message Receive Instant: The instant when the receiving of 
a message terminates at the receiver
State Message: A (periodic) message that contains state 
information. Non comsumable read at sender and update in 
place semantics at receiver.
Event Message: A message that contains event information. 
Consumed on reading and queued at receiver
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Model of a Component–Messages

OutputInput
compu-
tation

h-state

Start End
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Message Classification

not insidiousA message is insidious if it is permitted but incorrectinsidious

incorrectA message is correct if it is both timely and value-
correct.

correct

not value-
correct

A message is value-correct if it is in agreement with 
the value specification

value-correct

untimelyA message is timely if it is in agreement with the 
temporal specification

timely

not permittedA message is permitted with respect to a receiver if it 
passes the input assertion of that receiver. 

permitted

not checkedA message is checked at source (or, in short, 
checked) if it passes the output assertion.

checked

invalidA message is valid if its checksum and contents are 
in agreement.

valid

AntonymExplanationAttribute 
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History State (h-state)

The h-state comprises all information that is required to start 
an “empty” node (or task) at a given point in time:
♦ Size of the h-state depends on the point in time chosen
♦ relative minimum immediately after a computation (an 

atomic action) has been completed.
♦ System in ground state:  no messages in transit and no 

activity occurring.
♦ shall be small at reintegration points.

If no h-state has to be stored between successive activations of 
the node, the node is called “stateless” (at the chosen level of
abstraction!).
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Ground State (g-state)

g-state: Minimal h-state of a subsystem (node) where are 
tasks are inactive and all channels are flushed. Needed for 
reintegration of nodes.

Task A
Task B
Task C

Task A
Task B
Task C

Ground State at
Reintegration Point

Real Time

Real Time

active

active
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Temporal Requirements

Timeliness: An output message must be submitted to the 
environment at the specified instant (deadline).

Temporal accuracy of real-time data: the  data elements 
that are used in an a time-sensitive operation must be 
temporally accurate.

Minimal Jitter: The variability between a stimulus and a 
response should be as small as possible.

Jitter:  The difference between maximum and minimum 
latencies
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Validity of Real-Time Information

How long is the observation:

“The traffic light is green”

temporally accurate ?

Temporal parameters are associated with real-time data.
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RT Entities, RT Images and RT Objects

RT Entity RT  Image RT Object

R
T
L
A
N

Operator Distributed Computer Control Object

A

B
C

A: Measured Value of Flow
B: Setpoint for Flow       C:  Intended Valve Position

C
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Real Time (RT) Entity

A Real-Time (RT) Entity is a state variable of interest for the 
given purpose that changes its state as a function of real-time.
We distinguish between:
♦ Continuous RT Entities
♦ Discrete RT Entities

Examples of RT Entities:
♦ Flow in a Pipe (Continuous)
♦ Position of a Switch (Discrete)
♦ Setpoint selected by an Operator
♦ Intended Position of an Actuator
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Sphere of Control

Every RT-Entity is in the Sphere of Control (SOC) of a 
subsystem that has the authority to set the value of the RT-
entity:
♦ Setpoint is in the SOC of the operator
♦ Actual Flow is in the SOC of the control object
♦ Intended Valve Position is in the SOC of the Computer

Outside its SOC a RT-entity can only be observed, but not 
modified.
At this level of abstraction, changes in the representation of a
RT-entity are not significant.
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Observation

Information about the state of a RT-entity at a particular point 
in time is captured in an observation.  
An observation is an atomic triple 

Observation = <Name, Time, Value>
consisting of:
♦ The name of the RT-entity
♦ The point in real-time when the observation has been made
♦ The values of the RT-entity

Observations are transported in messages.
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State and Event Observation

An observation is a state observation,  if the value of the 
observation contains the full or partial state of the RT-entity. 
The time of a state observation denotes the point in time when 
the RT-entity was sampled.

An observation is an event observation, if the value of the 
observation contains the difference between the “old state” 
(the  last observed state) and the “new state”. The time of the 
event information denotes the point in time of the L-event of 
the “new state”.
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RT Images

A RT-Image is a picture of a RT Entity. A RT image is valid 
at a given point in time,  if it is an accurate representation, 
both  in the domains of value and time, of the corresponding 
RT Entity.
RT-Images
♦ are only valid during a specified interval of real-time.
♦ can be based on an observation or on a state estimation.
♦ can be stored in data objects, either inside a computer (RT 

object) or  outside in an actuator.
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RT Object

A RT-object is a “container” for a RT-Image or a RT-Entity in 
the Computer System.
A RT-object k 
♦ has an associated real-time clock which ticks with a 

granularity tk. This granularity must be in agreement with 
the dynamics of the RT-entity this object is to represent.

♦ Activates an object procedure if the time reaches a preset 
value.

♦ If there is no other way to activate an object procedure 
than by the periodic clock tick, we call the RT-object a 
synchronous RT object.
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Temporal Accuracy (II)

The temporal accuracy of a RT image is defined by referring 
to the recent history of observations of the related RT entity. 
A recent history RHi at time ti is an ordered set of time points  
<ti,ti-1,ti-2,. . . . ti-k>, where the length of the recent history

dacc = ti - ti-k

is called the temporal accuracy. Assume that the RT entity has 
been observed at every time point of the recent history.  A RT 
image is temporally accurate at the present  time ti 
if

∃ tj ∈ RHi:Value(RTimageatti) = Value( RTentityattj)
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Temporal Accuracy of an RT Object 

Real-Time

Accuracy Interval RT Entity
RT Image

Value

If a RT-object is updated by observations, then there will always be
a delay between the state of the RT entity and that of the RT object 
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Real Time
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Permanence

Permanence is a relation between a given message Mi that has 
arrived at a RT-object O and all messages Mi-1, Mi-2, . . . that 
have been sent to this object before (in the temporal order) 
message Mi.
The message Mi becomes permanent at object O as soon as 
all previously sent messages have arrived at O.
If actions are taken on non-permanent messages, then an 
inconsistent behavior   may result.   
The  action delay is the interval between the point in time 
when a message is sent by the sender and the point in time 
when the receiver knows that the message is  permanent.
How long does it take until a message becomes permanent?
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Action Delay

In distributed RT systems without a global time base the
maximum action delay:    dmax + ε = 2 dmax - dmin

but the consistent order problem is not yet solved!

In systems with a global time the maximum 
action delay:  dmax + 2g

In distributed  real time system the maximum protocol 
execution time and not the “median” protocol execution 
time determines the responsiveness.
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Jitter at the Application Level

Observation of the
Controlled Object

Output

Jitter:
Variability of the Delay

Delay Real-Time
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Probability of “Long” Jitter in PAR Protocols

Length of Jitter

Probability Density

dmin dmax

Application specific
critical jitter value

System operates
correctly

System Failure

Most of the time, the system will operate correctly.
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The Effect of Jitter: Measurement Error

Real-Time

Value V

∆V =
dV(t)

dt
∆d

 Jitter ∆d

Additional 
Measurement

Error ∆V
caused by the

Jitter ∆d

Jitter in Control Loops causes a degradation of control quality.
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The Effect of Jitter:  Orphans

Client

Request Response Transaction between a Client and a Server:

Server

Client -Timeout  less  than 2dmax

Orphan
Time

How large is dmax ?  
It is not contained in the interface specification, available at the sub-supplier.
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ET Systems:  Jitter at Critical Instant

A critical instant is a point in time, when all hosts in the ECUs try to 
send a message simultaneously. There is no phase control possible in 
ET system.
The message at the lowest priority level must wait until all higher 
priority messages have been sent (assume that all message have the 
same length).
Protocol   execution time at critical instant (n ECUs):

dmax= n dtrans 

Protocol execution time if the channel is free:
dmin=  dtrans 

Jitter of the lowest priority message:
Jitter = (n-1) dtrans 

The jitter depends  on the number of ECUs in the system.
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Summary:  Jitter is Bad

The consequences of a long jitter:
♦ Measurement error increases
♦ Probability of Orphans
♦ Action Delay increases
♦ Clock Synchronization difficult
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Real-Time Transaction

RT Transaction
between Sensor
and Actuator

Control

Real-Time
Bus

Man Machine
Interface (MMI)

ControlControl

MMIModelComm.

Sensor
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Rolling Mill Example 

An alarm monitoring component should raise an alarm

WHEN p1 < p2 THEN raise alarm;

At a first glance, this specification of an alarm condition looks 
reasonable.  A further analysis leads to the following open 
questions:
♦ What is the maximum1 and p2 ?
♦ At what points in time must the alarm condition be 

evaluated?
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Logical versus Temporal Control

The control scheme determines at what point in time the 
execution of a selected action will start.  In RT systems it is 
necessary  to distinguish between:
♦ Logical Control is concerned with  the control flow within 

a task to realize the specified data transformation
♦ Temporal Control is concerned with the point in time 

when a task is to be started or when it has to be preempted 
by a more urgent task.  Temporal control is closely related 
to scheduling



43

© H. Kopetz  06/07/2003 Introduction

Synchronous Programming Languages

In the past twenty years, synchronous programming languages 
have been developed that distinguish clearly between temporal 
control and logical control:

Initialize Memory
For each clock tick (or input event) do

Read Inputs
Compute Outputs
Update Memory

LUSTRE:  Used for the development of the flight critical control
software in Airbus planes
ESTEREL:  Used in telecommunication
Ref:   Beneviste, A et. Al.:  The Synchronous Languages, Twelve years later
Proc. of the IEEE Vol 91, Nr. 1, Jan 2003, p. 64-84
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Interface 

Interface: A point of interaction between a system and its 
environment
Linking Interface: An interface of a component through 
which it is connected to other components.
Service Providing LIF (SPLIF or LIF, for short): A LIF 
where the real-time service of a component is provided to its 
environment
Service Requesting LIF (SRLIF): A LIF where a service is 
requested from another component
Interface Model: The model of the concepts  a user has in 
mind when he/she relates the meaning of the chunks of 
information in a message to his/her conceptual world.
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Interfaces of a Node--Messages

Application
Software

Linking 
Interface (SPLIF or LIF)
Relevant for Composability

Diagnostic and Management Interface
(Boundary Scan in Hardware Design)

Configuration Planning Interface

Local
Interfaces

SRLIF
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The Three Interfaces

The three interfaces of an embedded system node:
Realtime Service (RS) Interface--LIF:
♦ In control applications periodic
♦ Contains RT observations
♦ Time sensitive

Diagnostic and Maintenance (DM) Interface: 
♦ Sporadic access
♦ Requires knowledge about  internals of a node (Restrictions in 

order to protect IP)
♦ Not time sensitive

Configuration Planning (CP) Interface:
♦ Sporadic access
♦ Used to install a node into a new configuration
♦ Not time sensitive



47

© H. Kopetz  06/07/2003 Introduction

SPLIF or LIF is Important for Composability

For the temporal composability, only the LIF interface is relevant.
An LIF (e.g., a control algorithm) must specify:
♦ At what point in time the  input information is delivered to a 

module (temporal pre-conditions)
♦ At what point in time the output information must be produced by

the module (temporal post-conditions).
♦ The properties of the intended  information transformation 

provided by the module (a proper model)
Focus on Message Based Interfaces!
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A Composition Involving three LIFs

Linking Interfaces
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Four Principles of Composability  (LIF)
(1)  Independent Development of the Components (Architecture)

The message interfaces of the components must be precisely 
specified in the value domain and in the temporal domain in order 
that the component systems can be developed in isolation.

(2)  Stability of Prior Services (Component Implementation)
The prior services of the components must be maintained after the 
integration and should not fail if a partner fails.

(3)  Performability of the Communication System (Comm. System)
The communication system transporting the messages must meet the
given temporal requirements under all specified operating 
conditions.

(4)  Replica Determinism (Architecture)
Replica Determinism is required for the transparent implementation 
of fault tolerance
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The LIF Specification hides the Implementation

Component

Operating System

Middleware

Programming Language

WCET

Scheduling

Memory Management

Etc.

Linking 
Interface

Specification

(In Messages,
Out Messages,

Temporal,
Meaning--
Interface

Model
State)
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Views of a System:  Four Universe Model

Physical Level
Analog Signals

Logical Level
Bits

Informational Level
Data Types

User Level
Meaning of Data Types

Operational Interface Specification
Value and Temporal

Meta-level Specification
Interpretation by the User

Avizienis, FTCS 12, 1982
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Interface Specification  

Operational Specification:
♦ Operational Input Interface Specification

• Syntactic Specification
• Temporal Specification
• Input Assertion

♦ Operational Output Interface Specification
• Syntactic Specification
• Temporal Specification
• Output Assertion

♦ Interface State
Meta-level Specification:
♦ Meaning of the data elements: Means-and-ends model
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Composability in Distributed Systems

Communication
System

Delay,
Dependability

Interface

Specification

A

Interface

Specification

B
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A Component may support many LIFs

Service X

Service Y

Service Z

X

Z

Y
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Property Mismatches at Interfaces
Property Example
Physical, Electrical Line interface, plugs,
Communication protocol CAN versus J1850
Syntactic Endianness of data
Flow control Implicit or explicit,

Information push or pull
Incoherence in naming Same name for different entities
Data  representation Different styles for data representation

Different formats for date
Temporal Different time bases

Inconsistent time-outs
Dependability Different failure mode assumptions
Semantics Differences in the meaning of the data
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Boundary Line versus Interface System (IS)

Subsystem
A

Subsystem
B

Subsystem
A  IS Subsystem

B

BL

BL BL
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Distributed Interface File

Communication
System

Inter-
face 
File

Interface
Component

(may be empty)

Component A Component B

Inter-
face 
File



58

© H. Kopetz  06/07/2003 Introduction

Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems  
(e.g., data flow from sensor node to processing node).  
We distinguish between:

Sender Receiver
Control

Elementary 
Interface:

Sender Receiver
Composite 
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages
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Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems  
(e.g., data flow from sensor node to processing node).  
We distinguish between:

Sender Receiver
Control

Elementary 
Interface:

Sender Receiver
Composite 
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages
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Information Push vs. Information Pull

Information Push Interface:  Information producer pushes 
information on information consumer (e.g., telephone, interrupt)
Information Pull Interfaces: Information consumer requests 
information when  required (e.g, email).
What is better in real-time systems?--For whom?

Sender Receiver
Control

Information
Push

Sender Receiver
Information
Pull
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Unidirectional Information Transfer

Sender
Task

CNI

Queue

Receiving
Task

CNI

Queue

Sender
Task

CNI
DPRAM

Receiving
Task

CNI
DPRAM

Clock

Event-Message- Event Triggered:

State Messsage- Time Triggered:

Information Push Information Pull

Information Push Information Push

Control
Data
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Architecture Design is Interface Design

A good interface within a distributed real-time system
♦ is precisely specified in the value domain and in the 

temporal domain,
♦ provides the relevant abstractions of the interfacing 

subsystems and hides the irrelevant details,
♦ leads to minimal coupling between the interfacing 

subsystems,
♦ limits error propagation across the interface,
♦ Conforms to the established architectural style

and thus introduces structure into a system.


