
1

© H. Kopetz 06/07/2003 Introduction

OMG Smart Transducer Specification (I)

H. Kopetz
TU Wien
July 2003

2

© H. Kopetz 06/07/2003 Introduction

The Time-Triggered Architecture

Take Time from the Problem Domain

And move it into the Solution Domain

3

© H. Kopetz 06/07/2003 Introduction

Basic Concepts

•RT System Requirements

•Model of Time

•Model of a Component

•Temporal Accuracy

•Interfaces

4

© H. Kopetz 06/07/2003 Introduction

When is a Computer System ‘Real-Time’?

A real-time computer system is a computer system in which
the correctness of the system behavior depends not only on
the logical results of the computations, but also on the
physical time, when these results are produced.
The point in time when a result has to be produced is called a
deadline.
Deadlines are dictated by the environment of the real-time
computer system.

5

© H. Kopetz 06/07/2003 Introduction

Some Definitions

If the result has utility even after the deadline, we call the
deadline soft. Systems with soft deadlines are not the focus
of these lectures.
If the result has no utility after the deadline has passed, the
deadline is called firm.
If a catastrophe could result if a strict deadline is missed, the
deadline is called hard.
A real-time computer system that has to meet at least one hard
deadline is called a hard real-time system.
Hard- and soft real-time system design are fundamentally
different.

6

© H. Kopetz 06/07/2003 Introduction

Hard Real Time versus Soft Real Time

Characteristic Hard Real Time Soft Real Time
Response time hard soft
Pacing environment computer
Peak-Load Perform. predictable degraded
Error Detection system user
Safety critical non-critical
Redundancy active standby
Time Granularity millisecond second
Data Files small/medium large
Data Integrity short term long term

7

© H. Kopetz 06/07/2003 Introduction

Fail-Safe versus Fail-Operational

A system is fail-safe if there is a safe state in the environment
that can be reached in case of a system failure, e.g., ABS, train
signaling system.
In a fail-safe application the computer has to have a high error
detection coverage.
Fail safeness is a characteristic of the application, not the
computer system.
A system is fail operational, if no safe state can be reached in
case of a system failure,e.g., a flight control system aboard an
airplane.
In fail-operational applications the computer system has to
provide a minimum level of service, even after the occurrence
of a fault.

8

© H. Kopetz 06/07/2003 Introduction

Predictability in Rare Event Situations

A rare event is an important event that occurs very
infrequently during the lifetime of a system, e.g., the rupture
of a pipe in a nuclear reactor.
A rare event can give rise to many correlated service requests
(e.g., an alarm shower).
In a number of applications, the utility of a system depends on
the predictable performance in rare event scenarios, e.g. flight
control system
In most cases, workload testing will not cover the rare event
scenario.

9

© H. Kopetz 06/07/2003 Introduction

Example of a Distributed System

Driver
Interface

CC

Engine
Control

CC

I/O

Assistant
System

CC

Steering
Manager

CC

I/O

Gateway
Body

CC

I/O

Suspen-
sion

CC

I/O

CC: Communication Controller

Communication
Network

Interface (CNI)
within a node

Brake
Manager

CC

I/O

Body Electronics
Network

Communication
System

10

© H. Kopetz 06/07/2003 Introduction

Some Important Concepts in Relation to Time

We assume a (dense) Newtonian time in the environment.
Instant: cut of the timeline
Duration: interval on the timeline
Event: occurrence at an instant--has no duration

Omniscient Observer: has a reference clock that is in perfect
Synchrony with Atomic Time
Absolute Timestamp: Timestamp generated by the reference clock

Real Time

11

© H. Kopetz 06/07/2003 Introduction

Global Sparse Time Base

It is assumed that within the distributed system a global time
of known precision π is available at every node.
The global time is used to build a sparse time base as
follows:

0 1 2 3 4 5 6 7 8 9

Time

Events are only allowed to occur at subintervals of the timeline

∆∆∆∆ ππππ∆∆∆∆ ππππππππ

12

© H. Kopetz 06/07/2003 Introduction

What is a “Component”?

In our context, a component is complete computer system that
is time aware. It consists of
♦ The hardware
♦ The system and application software
♦ The internal state

The component interacts with its environment by the
exchange of messages via interfaces.
What is a software component?

13

© H. Kopetz 06/07/2003 Introduction

Closed Component vs. Open Component

♦ Closed Component: Contains no local interface to the
real world, but can contain local interfaces to other closed
components.
Semi-closed if it is time-aware.

♦ Open Component: Contains an interface to the real
world.
Semi-open if no control signals are accepted from the real-
world (e.g., a sampling system).

The real world has an unbounded number of properties.

14

© H. Kopetz 06/07/2003 Introduction

Message-Model–Appropriate Abstraction

Message: An atomic data structure that is formed for the
purpose of communication among nodes
Message Send Instant: The instant when the sending of a
message starts at the sender
Message Receive Instant: The instant when the receiving of
a message terminates at the receiver
State Message: A (periodic) message that contains state
information. Non comsumable read at sender and update in
place semantics at receiver.
Event Message: A message that contains event information.
Consumed on reading and queued at receiver

15

© H. Kopetz 06/07/2003 Introduction

Model of a Component–Messages

OutputInput
compu-
tation

h-state

Start End

16

© H. Kopetz 06/07/2003 Introduction

Message Classification

not insidiousA message is insidious if it is permitted but incorrectinsidious

incorrectA message is correct if it is both timely and value-
correct.

correct

not value-
correct

A message is value-correct if it is in agreement with
the value specification

value-correct

untimelyA message is timely if it is in agreement with the
temporal specification

timely

not permittedA message is permitted with respect to a receiver if it
passes the input assertion of that receiver.

permitted

not checkedA message is checked at source (or, in short,
checked) if it passes the output assertion.

checked

invalidA message is valid if its checksum and contents are
in agreement.

valid

AntonymExplanationAttribute

17

© H. Kopetz 06/07/2003 Introduction

History State (h-state)

The h-state comprises all information that is required to start
an “empty” node (or task) at a given point in time:
♦ Size of the h-state depends on the point in time chosen
♦ relative minimum immediately after a computation (an

atomic action) has been completed.
♦ System in ground state: no messages in transit and no

activity occurring.
♦ shall be small at reintegration points.

If no h-state has to be stored between successive activations of
the node, the node is called “stateless” (at the chosen level of
abstraction!).

18

© H. Kopetz 06/07/2003 Introduction

Ground State (g-state)

g-state: Minimal h-state of a subsystem (node) where are
tasks are inactive and all channels are flushed. Needed for
reintegration of nodes.

Task A
Task B
Task C

Task A
Task B
Task C

Ground State at
Reintegration Point

Real Time

Real Time

active

active

19

© H. Kopetz 06/07/2003 Introduction

Temporal Requirements

Timeliness: An output message must be submitted to the
environment at the specified instant (deadline).

Temporal accuracy of real-time data: the data elements
that are used in an a time-sensitive operation must be
temporally accurate.

Minimal Jitter: The variability between a stimulus and a
response should be as small as possible.

Jitter: The difference between maximum and minimum
latencies

20

© H. Kopetz 06/07/2003 Introduction

Validity of Real-Time Information

How long is the observation:

“The traffic light is green”

temporally accurate ?

Temporal parameters are associated with real-time data.

21

© H. Kopetz 06/07/2003 Introduction

RT Entities, RT Images and RT Objects

RT Entity RT Image RT Object

R
T
L
A
N

Operator Distributed Computer Control Object

A

B
C

A: Measured Value of Flow
B: Setpoint for Flow C: Intended Valve Position

C

22

© H. Kopetz 06/07/2003 Introduction

Real Time (RT) Entity

A Real-Time (RT) Entity is a state variable of interest for the
given purpose that changes its state as a function of real-time.
We distinguish between:
♦ Continuous RT Entities
♦ Discrete RT Entities

Examples of RT Entities:
♦ Flow in a Pipe (Continuous)
♦ Position of a Switch (Discrete)
♦ Setpoint selected by an Operator
♦ Intended Position of an Actuator

23

© H. Kopetz 06/07/2003 Introduction

Sphere of Control

Every RT-Entity is in the Sphere of Control (SOC) of a
subsystem that has the authority to set the value of the RT-
entity:
♦ Setpoint is in the SOC of the operator
♦ Actual Flow is in the SOC of the control object
♦ Intended Valve Position is in the SOC of the Computer

Outside its SOC a RT-entity can only be observed, but not
modified.
At this level of abstraction, changes in the representation of a
RT-entity are not significant.

24

© H. Kopetz 06/07/2003 Introduction

Observation

Information about the state of a RT-entity at a particular point
in time is captured in an observation.
An observation is an atomic triple

Observation = <Name, Time, Value>
consisting of:
♦ The name of the RT-entity
♦ The point in real-time when the observation has been made
♦ The values of the RT-entity

Observations are transported in messages.

25

© H. Kopetz 06/07/2003 Introduction

State and Event Observation

An observation is a state observation, if the value of the
observation contains the full or partial state of the RT-entity.
The time of a state observation denotes the point in time when
the RT-entity was sampled.

An observation is an event observation, if the value of the
observation contains the difference between the “old state”
(the last observed state) and the “new state”. The time of the
event information denotes the point in time of the L-event of
the “new state”.

26

© H. Kopetz 06/07/2003 Introduction

RT Images

A RT-Image is a picture of a RT Entity. A RT image is valid
at a given point in time, if it is an accurate representation,
both in the domains of value and time, of the corresponding
RT Entity.
RT-Images
♦ are only valid during a specified interval of real-time.
♦ can be based on an observation or on a state estimation.
♦ can be stored in data objects, either inside a computer (RT

object) or outside in an actuator.

27

© H. Kopetz 06/07/2003 Introduction

RT Object

A RT-object is a “container” for a RT-Image or a RT-Entity in
the Computer System.
A RT-object k
♦ has an associated real-time clock which ticks with a

granularity tk. This granularity must be in agreement with
the dynamics of the RT-entity this object is to represent.

♦ Activates an object procedure if the time reaches a preset
value.

♦ If there is no other way to activate an object procedure
than by the periodic clock tick, we call the RT-object a
synchronous RT object.

28

© H. Kopetz 06/07/2003 Introduction

Temporal Accuracy (II)

The temporal accuracy of a RT image is defined by referring
to the recent history of observations of the related RT entity.
A recent history RHi at time ti is an ordered set of time points
<ti,ti-1,ti-2,. . . . ti-k>, where the length of the recent history

dacc = ti - ti-k

is called the temporal accuracy. Assume that the RT entity has
been observed at every time point of the recent history. A RT
image is temporally accurate at the present time ti
if

∃ tj ∈ RHi:Value(RTimageatti) = Value(RTentityattj)

29

© H. Kopetz 06/07/2003 Introduction

Temporal Accuracy of an RT Object

Real-Time

Accuracy Interval RT Entity
RT Image

Value

If a RT-object is updated by observations, then there will always be
a delay between the state of the RT entity and that of the RT object

30

© H. Kopetz 06/07/2003 Introduction

Hidden Channel (red)

Vessel

C

D

A

BOperator

Alarm
Monitor

Pressure
Sensor

Control Valve

Hidden
Channel MBA

MDA

MBC

Comm. System

31

© H. Kopetz 06/07/2003 Introduction

Real Time

dmax

dmin

dmax

MDA

MBC2

1

1

3 4

5

6

MBA

1 Sending of

Sending of

2 Arrival of

3 Sending of

4 Arrival of

5 Arrival of

6 Permanence of

MBC

MDA

MDA

MBA

hidden channel

interval of
incorrect alarm

Hidden Channel (2)

32

© H. Kopetz 06/07/2003 Introduction

Permanence

Permanence is a relation between a given message Mi that has
arrived at a RT-object O and all messages Mi-1, Mi-2, . . . that
have been sent to this object before (in the temporal order)
message Mi.
The message Mi becomes permanent at object O as soon as
all previously sent messages have arrived at O.
If actions are taken on non-permanent messages, then an
inconsistent behavior may result.
The action delay is the interval between the point in time
when a message is sent by the sender and the point in time
when the receiver knows that the message is permanent.
How long does it take until a message becomes permanent?

33

© H. Kopetz 06/07/2003 Introduction

Action Delay

In distributed RT systems without a global time base the
maximum action delay: dmax + ε = 2 dmax - dmin

but the consistent order problem is not yet solved!

In systems with a global time the maximum
action delay: dmax + 2g

In distributed real time system the maximum protocol
execution time and not the “median” protocol execution
time determines the responsiveness.

34

© H. Kopetz 06/07/2003 Introduction

Jitter at the Application Level

Observation of the
Controlled Object

Output

Jitter:
Variability of the Delay

Delay Real-Time

35

© H. Kopetz 06/07/2003 Introduction

Probability of “Long” Jitter in PAR Protocols

Length of Jitter

Probability Density

dmin dmax

Application specific
critical jitter value

System operates
correctly

System Failure

Most of the time, the system will operate correctly.

36

© H. Kopetz 06/07/2003 Introduction

The Effect of Jitter: Measurement Error

Real-Time

Value V

∆V =
dV(t)

dt
∆d

 Jitter ∆d

Additional
Measurement

Error ∆V
caused by the

Jitter ∆d

Jitter in Control Loops causes a degradation of control quality.

37

© H. Kopetz 06/07/2003 Introduction

The Effect of Jitter: Orphans

Client

Request Response Transaction between a Client and a Server:

Server

Client -Timeout less than 2dmax

Orphan
Time

How large is dmax ?
It is not contained in the interface specification, available at the sub-supplier.

38

© H. Kopetz 06/07/2003 Introduction

ET Systems: Jitter at Critical Instant

A critical instant is a point in time, when all hosts in the ECUs try to
send a message simultaneously. There is no phase control possible in
ET system.
The message at the lowest priority level must wait until all higher
priority messages have been sent (assume that all message have the
same length).
Protocol execution time at critical instant (n ECUs):

dmax= n dtrans

Protocol execution time if the channel is free:
dmin= dtrans

Jitter of the lowest priority message:
Jitter = (n-1) dtrans

The jitter depends on the number of ECUs in the system.

39

© H. Kopetz 06/07/2003 Introduction

Summary: Jitter is Bad

The consequences of a long jitter:
♦ Measurement error increases
♦ Probability of Orphans
♦ Action Delay increases
♦ Clock Synchronization difficult

40

© H. Kopetz 06/07/2003 Introduction

Real-Time Transaction

RT Transaction
between Sensor
and Actuator

Control

Real-Time
Bus

Man Machine
Interface (MMI)

ControlControl

MMIModelComm.

Sensor

41

© H. Kopetz 06/07/2003 Introduction

Rolling Mill Example

An alarm monitoring component should raise an alarm

WHEN p1 < p2 THEN raise alarm;

At a first glance, this specification of an alarm condition looks
reasonable. A further analysis leads to the following open
questions:
♦ What is the maximum1 and p2 ?
♦ At what points in time must the alarm condition be

evaluated?

42

© H. Kopetz 06/07/2003 Introduction

Logical versus Temporal Control

The control scheme determines at what point in time the
execution of a selected action will start. In RT systems it is
necessary to distinguish between:
♦ Logical Control is concerned with the control flow within

a task to realize the specified data transformation
♦ Temporal Control is concerned with the point in time

when a task is to be started or when it has to be preempted
by a more urgent task. Temporal control is closely related
to scheduling

43

© H. Kopetz 06/07/2003 Introduction

Synchronous Programming Languages

In the past twenty years, synchronous programming languages
have been developed that distinguish clearly between temporal
control and logical control:

Initialize Memory
For each clock tick (or input event) do

Read Inputs
Compute Outputs
Update Memory

LUSTRE: Used for the development of the flight critical control
software in Airbus planes
ESTEREL: Used in telecommunication
Ref: Beneviste, A et. Al.: The Synchronous Languages, Twelve years later
Proc. of the IEEE Vol 91, Nr. 1, Jan 2003, p. 64-84

44

© H. Kopetz 06/07/2003 Introduction

Interface

Interface: A point of interaction between a system and its
environment
Linking Interface: An interface of a component through
which it is connected to other components.
Service Providing LIF (SPLIF or LIF, for short): A LIF
where the real-time service of a component is provided to its
environment
Service Requesting LIF (SRLIF): A LIF where a service is
requested from another component
Interface Model: The model of the concepts a user has in
mind when he/she relates the meaning of the chunks of
information in a message to his/her conceptual world.

45

© H. Kopetz 06/07/2003 Introduction

Interfaces of a Node--Messages

Application
Software

Linking
Interface (SPLIF or LIF)
Relevant for Composability

Diagnostic and Management Interface
(Boundary Scan in Hardware Design)

Configuration Planning Interface

Local
Interfaces

SRLIF

46

© H. Kopetz 06/07/2003 Introduction

The Three Interfaces

The three interfaces of an embedded system node:
Realtime Service (RS) Interface--LIF:
♦ In control applications periodic
♦ Contains RT observations
♦ Time sensitive

Diagnostic and Maintenance (DM) Interface:
♦ Sporadic access
♦ Requires knowledge about internals of a node (Restrictions in

order to protect IP)
♦ Not time sensitive

Configuration Planning (CP) Interface:
♦ Sporadic access
♦ Used to install a node into a new configuration
♦ Not time sensitive

47

© H. Kopetz 06/07/2003 Introduction

SPLIF or LIF is Important for Composability

For the temporal composability, only the LIF interface is relevant.
An LIF (e.g., a control algorithm) must specify:
♦ At what point in time the input information is delivered to a

module (temporal pre-conditions)
♦ At what point in time the output information must be produced by

the module (temporal post-conditions).
♦ The properties of the intended information transformation

provided by the module (a proper model)
Focus on Message Based Interfaces!

48

© H. Kopetz 06/07/2003 Introduction

A Composition Involving three LIFs

Linking Interfaces

49

© H. Kopetz 06/07/2003 Introduction

Four Principles of Composability (LIF)
(1) Independent Development of the Components (Architecture)

The message interfaces of the components must be precisely
specified in the value domain and in the temporal domain in order
that the component systems can be developed in isolation.

(2) Stability of Prior Services (Component Implementation)
The prior services of the components must be maintained after the
integration and should not fail if a partner fails.

(3) Performability of the Communication System (Comm. System)
The communication system transporting the messages must meet the
given temporal requirements under all specified operating
conditions.

(4) Replica Determinism (Architecture)
Replica Determinism is required for the transparent implementation
of fault tolerance

50

© H. Kopetz 06/07/2003 Introduction

The LIF Specification hides the Implementation

Component

Operating System

Middleware

Programming Language

WCET

Scheduling

Memory Management

Etc.

Linking
Interface

Specification

(In Messages,
Out Messages,

Temporal,
Meaning--
Interface

Model
State)

51

© H. Kopetz 06/07/2003 Introduction

Views of a System: Four Universe Model

Physical Level
Analog Signals

Logical Level
Bits

Informational Level
Data Types

User Level
Meaning of Data Types

Operational Interface Specification
Value and Temporal

Meta-level Specification
Interpretation by the User

Avizienis, FTCS 12, 1982

52

© H. Kopetz 06/07/2003 Introduction

Interface Specification

Operational Specification:
♦ Operational Input Interface Specification

• Syntactic Specification
• Temporal Specification
• Input Assertion

♦ Operational Output Interface Specification
• Syntactic Specification
• Temporal Specification
• Output Assertion

♦ Interface State
Meta-level Specification:
♦ Meaning of the data elements: Means-and-ends model

53

© H. Kopetz 06/07/2003 Introduction

Composability in Distributed Systems

Communication
System

Delay,
Dependability

Interface

Specification

A

Interface

Specification

B

54

© H. Kopetz 06/07/2003 Introduction

A Component may support many LIFs

Service X

Service Y

Service Z

X

Z

Y

55

© H. Kopetz 06/07/2003 Introduction

Property Mismatches at Interfaces
Property Example
Physical, Electrical Line interface, plugs,
Communication protocol CAN versus J1850
Syntactic Endianness of data
Flow control Implicit or explicit,

Information push or pull
Incoherence in naming Same name for different entities
Data representation Different styles for data representation

Different formats for date
Temporal Different time bases

Inconsistent time-outs
Dependability Different failure mode assumptions
Semantics Differences in the meaning of the data

56

© H. Kopetz 06/07/2003 Introduction

Boundary Line versus Interface System (IS)

Subsystem
A

Subsystem
B

Subsystem
A IS Subsystem

B

BL

BL BL

57

© H. Kopetz 06/07/2003 Introduction

Distributed Interface File

Communication
System

Inter-
face
File

Interface
Component

(may be empty)

Component A Component B

Inter-
face
File

58

© H. Kopetz 06/07/2003 Introduction

Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).
We distinguish between:

Sender Receiver
Control

Elementary
Interface:

Sender Receiver
Composite
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages

59

© H. Kopetz 06/07/2003 Introduction

Elementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).
We distinguish between:

Sender Receiver
Control

Elementary
Interface:

Sender Receiver
Composite
Interface:

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.

Example:
state message
in a DPRAM

Queue of
event messages

60

© H. Kopetz 06/07/2003 Introduction

Information Push vs. Information Pull

Information Push Interface: Information producer pushes
information on information consumer (e.g., telephone, interrupt)
Information Pull Interfaces: Information consumer requests
information when required (e.g, email).
What is better in real-time systems?--For whom?

Sender Receiver
Control

Information
Push

Sender Receiver
Information
Pull

61

© H. Kopetz 06/07/2003 Introduction

Unidirectional Information Transfer

Sender
Task

CNI

Queue

Receiving
Task

CNI

Queue

Sender
Task

CNI
DPRAM

Receiving
Task

CNI
DPRAM

Clock

Event-Message- Event Triggered:

State Messsage- Time Triggered:

Information Push Information Pull

Information Push Information Push

Control
Data

62

© H. Kopetz 06/07/2003 Introduction

Architecture Design is Interface Design

A good interface within a distributed real-time system
♦ is precisely specified in the value domain and in the

temporal domain,
♦ provides the relevant abstractions of the interfacing

subsystems and hides the irrelevant details,
♦ leads to minimal coupling between the interfacing

subsystems,
♦ limits error propagation across the interface,
♦ Conforms to the established architectural style

and thus introduces structure into a system.

