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The Time-Triggered Architecture

Take Timefrom the Problem Domain

And moveit into the Solution Domain
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Basic Concepts
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*RT System Requirements
*Model of Time

*Model of a Component
*Temporal Accuracy

| nterfaces
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When isa Computer System ‘Real-Time ?

A real-time computer system isacomputer system in which
the correctness of the system behavior depends not only on
the logical results of the computations, but also on the
physical time, when these results are produced.

The point in time when aresult has to be produced is called a
deadline.

Deadlines are dictated by the environment of the real-time
computer system.

© H. Kopetz 06/07/2003 Introduction



Some Definitions

If the result has utility even after the deadline, we call the
deadline soft. Systems with soft deadlines are not the focus
of these |lectures.

If the result has no utility after the deadline has passed, the
deadlineis called firm.

If a catastrophe could result if astrict deadline is missed, the
deadlineiscalled hard.

A real-time computer system that has to meet at least one hard
deadline is called a hard real-time system.

Hard- and soft real-time system design are fundamentally
different.
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Hard Real Time versus Soft Real Time

Characteristic Hard Real Time Soft Real Time
Response time hard soft

Pacing environment computer
Peak-Load Perform. predictable degraded

Error Detection system user

Safety critical non-critical
Redundancy active standby

Time Granularity millisecond second
DataFiles small/medium large

Data I ntegrity short term long term
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Fail-Safe ver sus Fail-Operational

A system isfail-safe if there is a safe state in the environment
that can be reached in case of asystem failure, e.q., ABS, train
signaling system.

In afail-safe application the computer hasto have ahigh error
detection coverage.

Fall safeness is a characteristic of the application, not the
computer system.

A system isfail operational, if no safe state can be reached in
case of asystem failure,e.g., aflight control system aboard an
airplane.

In fail-operational applications the computer system hasto
provide aminimum level of service, even after the occurrence
of afault.
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Predictability in Rare Event Situations

A rare event i1san important event that occurs very
Infrequently during the lifetime of a system, e.g., the rupture
of apipein anuclear reactor.

A rare event can give rise to many correlated service requests
(e.g., an alarm snower).

In a number of applications, the utility of a system depends on
the predictable performance in rare event scenarios, e.g. flight
control system

In most cases, workload testing will not cover the rare event
scenario.
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Example of a Distributed System
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CC: Communication Controller
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Some | mportant Conceptsin Relation to Time P

We assume a (dense) Newtonian time in the environment.

| nstant: cut of the timealine
Duration: interval onthetimeline
Event: occurrence at an instant--has no duration

Rea Time
% % '

Omniscient Observer: hasareference clock that isin perfect
Synchrony with Atomic Time
Absolute Timestamp: Timestamp generated by the reference clock
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Global Sparse Time Base

It is assumed that within the distributed system a global time
of known precision 1tis avallable at every node.

The global time is used to build a sparse time base as
follows:
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Events{}, areonly allowed to occur at subintervals of the timeline
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What isa“ Component” ?

In our context, a component is complete computer system that
IStime aware. It consists of

¢ Thehardware
¢ The system and application software
¢ Theinterna state

The component interacts with its environment by the
exchange of messages via interfaces.

What is a software component?
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Closed Component vs. Open Component -

¢ Closed Component: Contains no local interface to the
real world, but can contain local interfaces to other closed
components.
Semi-closed if It iIstime-aware.

¢ Open Component: Contains an interface to the real
world.
Semi-open if no control signals are accepted from the real -
world (e.g., asampling system).

Thereal world hasan unbounded number of properties.
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M essage-M odel-Appropriate Abstraction

Message: An atomic data structure that is formed for the
purpose of communication among nodes

Message Send Instant: The instant when the sending of a
message starts at the sender

M essage Receive I nstant: The instant when the receiving of
amessage terminates at the receiver

State Message: A (periodic) message that contains state
Information. Non comsumable read at sender and update in
place semantics at receiver.

Event Message: A message that contains event information.
Consumed on reading and queued at receiver
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M odel of a Component—M essages

| nput
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M essage Classification
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Attribute Explanation Antonym

valid A message is valid if its checksum and contents are | invalid
IN agreement.

checked A message is checked at source (or, in short, | not checked
checked) if it passes the output assertion.

permitted A message is permitted with respect to areceiver if it | not permitted
passes the input assertion of that receiver.

timely A message is timely if it is in agreement with the | untimely
temporal specification

value-correct | A message is value-correct if it isin agreement with | not value-
the value specification correct

correct A message is correct if it is both timely and value- | incorrect
correct.

Insidious A message isinsidiousif it is permitted but incorrect | not insidious
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History State (h-state)

The h-state comprises all information that is required to start
an “empty” node (or task) at a given point in time:

¢ Size of the h-state depends on the point in time chosen

¢ relative minimum immediately after a computation (an
atomic action) has been compl eted.

¢ System in ground state: no messagesin transit and no
activity occurring.

¢ shall be small at reintegration points.

If no h-state has to be stored between success ve activations of
the node, the node is called “ stateless’ (at the chosen level of
abstraction!).
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Ground State (g-state)

Task A

Task B active
Task C
—>
Real Time
Task A :
Task C
Ground State at Real Time

Reintegration Point

g-state: Minimal h-state of a subsystem (node) where are
tasks are inactive and all channels are flushed. Needed for
reintegration of nodes.
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Temporal Requirements

Timeliness. An output message must be submitted to the
environment at the specified instant (deadline).

Temporal accuracy of real-time data: the data elements
that are used in an atime-sensitive operation must be
temporally accurate.

Minimal Jitter: The variability between a stimulus and a
response should be as small as possible.

Jitter: The difference between maximum and minimum
|latencies
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Validity of Real-Time Information

How long is the observation:

“Thetraffic light is green’

temporally accurate ?

a» D »
) )

T ral parameters are associated with real-time data.
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RT Entities, RT Imagesand RT Objects

Operator Distributed Computer Control Object

"X

B RT Entity RT Image RT Object

A: Measured Value of Flow
B: Setpoint for Flow  C: Intended Valve Position
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Real Time (RT) Entity

A Red-Time (RT) Entity is a state variable of interest for the
given purpose that changes its state as a function of real-time.

We distinguish between:
¢ Continuous RT Entities
¢ Discrete RT Entities
Examples of RT Entities:
¢ Flow in aPipe (Continuous)
¢ Position of a Switch (Discrete)
¢ Setpoint selected by an Operator
¢ Intended Position of an Actuator

© H. Kopetz 06/07/2003 Introduction



23

Sphere of Control

Every RT-Entity isin the Sphere of Control (SOC) of a
subsystem that has the authority to set the value of the RT-
entity:

¢ Setpoint isin the SOC of the operator
¢ Actua Flow isin the SOC of the control object
¢ Intended Valve Position isin the SOC of the Computer

Outside its SOC a RT-entity can only be observed, but not
modified.

At thislevel of abstraction, changes in the representation of a
RT-entity are not significant.
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Observation

Information about the state of a RT-entity at a particular point
In time is captured in an observation.

An observation is an atomic triple
Observation = <Name, Time, Vaue>
consisting of:
¢ The name of the RT-entity
¢ The point in real-time when the observation has been made
¢ Thevalues of the RT-entity

Observations are transported in messages.
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State and Event Observation

An observation is a state observation, if the value of the
observation contains the full or partial state of the RT-entity.
The time of a state observation denotes the point in time when
the RT-entity was sampl ed.

An observation is an event observation, if the value of the
observation contains the difference between the “old state’
(the last observed state) and the “new state”. The time of the
event information denotes the point in time of the L-event of
the “new state”.
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RT Images

A RT-Imageisapicture of aRT Entity. A RT imageisvalid
at agiven point intime, If it isan accurate representation,
both in the domains of value and time, of the corresponding
RT Entity.

RT-lmages
¢ areonly valid during a specified interval of real-time.
¢ can be based on an observation or on a state estimation.

¢ can be stored in data objects, either inside a computer (RT
object) or outside in an actuator.
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RT Object

A RT-object isa“container” for a RT-Image or a RT-Entity in
the Computer System.

A RT-object k

¢ has an associated real-time clock which ticks with a
granularity t,. This granularity must be in agreement with
the dynamics of the RT-entity this object is to represent.

¢ Activates an object procedure if the time reaches a preset
value.

¢ If thereisno other way to activate an object procedure
than by the periodic clock tick, we call the RT-object a
synchronous RT object.
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Temporal Accuracy (I1)

The temporal accuracy of aRT image is defined by referring
to the recent history of observations of the related RT entity.
A recent history RH; at timet; is an ordered set of time points
<t,t .,t.....q > wherethelength of the recent history

Oace = T - tik
IS called the temporal accuracy. Assume that the RT entity has

been observed at every time point of the recent history. A RT
Image is temporally accurate at the present timet;

If

(it [RH: ValuéRTimagatt ) = Valug RTentityatt )
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Temporal Accuracy of an RT Object

Vaue
A

Accuracy Interval — RT Entity
l l — RT Image

M\QN

R
Real-Time

If a RT-object is updated by observations, then there will always be
a delay between the state of the RT entity and that of the RT object
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Hidden Channel (red)

Alarm
Monitor
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Hidden Channéd (2)
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Per manence

Permanence is arelation between a given message M; that has
arrived at a RT-object O and all messagesM, ;, M, ,, . . . that
have been sent to this object before (in the temporal order)
message M.

The message M, becomes permanent at object O as soon as
all previously sent messages have arrived at O.

If actions are taken on non-permanent messages, then an
Inconsistent behavior may result.

The action delay istheinterval between the point in time
when a message Is sent by the sender and the point in time
when the recelver knows that the message is permanent.

How long does it take until a message becomes permanent?
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Action Delay

In distributed RT systems without a global time base the
maximum actiondelay: d ., +€=2d., -d.,
but the consistent order problem is not yet solved!

In systems with aglobal time the maximum
actiondelay: d .. +29

In distributed real time system the maximum pr otocol
execution time and not the “median” protocol execution
time deter mines the responsiveness.
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Jitter at the Application Level

Jitter:
Observation of the Variability of the Delay
Controlled Object E—

Delay l Output Real-Time
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Probability of “Long” Jitter in PAR Protocols

Probability Densit
A 4 Y Application specific

critical jitter value

System operates System Failure
correctly

>
Most of the time, the system will operate correctly.
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The Effect of Jitter: Measurement Error %

VaueV

Additional .
M easurement < ............................ :
Error AV ’
caused by the
Jitter Ad

dt

AV i
Jitter Ad Real-Time

Jitter in Control L oops causes a degradation of control quality.
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The Effect of Jitter: Orphans

Request Response Transaction between a Client and a Server:

Client -Timeout less than 2d.

< >

Client

Hu’/ Orphan
Time

Server

How largeis d . ?
It is not contained in the interface specification, available at the sub-supplier.
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ET Systems. Jitter at Critical I nstant

A critical instant isapoint in time, when all hostsin the ECUstry to

send a message simultaneously. There i1s no phase control possiblein
ET system.

The message at the lowest priority level must wait until all higher

priority messages have been sent (assume that all message have the
same length).

Protocol execution time at critical instant (n ECUS):
dmax: n dtrans
Protocol execution time if the channel isfree:
dmin= d
Jitter of the lowest priority message:
Jitter = (n-1) d,, -«
Thejitter depends on the number of ECUsin the system.
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Summary: Jitter isBad

The conseguences of along jitter:
¢ Measurement error increases
¢ Probability of Orphans
¢ Action Delay increases
¢ Clock Synchronization difficult
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Real-Time Transaction

Men Mactine |

Comm. Model MMI

Real-Time
Bus

Control Control Control Sensor |B RT Transaction
[ between Sensor

‘ and Actuator
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Rolling Mill Example

An alarm monitoring component should raise an alarm
WHEN p, < p, THEN raise darm,

At afirst glance, this specification of an alarm condition looks
reasonable. A further analysis leads to the following open
guestions:

¢ What isthe maximum, and p, ?

¢ At what pointsin time must the alarm condition be
evaluated?
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L ogical versus Temporal Control

The control scheme determines at what point in time the
execution of a selected action will start. In RT systemsit is
necessary to distinguish between:

¢ Logical Control isconcerned with the control flow within
atask to realize the specified data transformation

¢ Temporal Control isconcerned with the point intime
when atask isto be started or when it has to be preempted
by amore urgent task. Temporal control is closealy related
to scheduling
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Synchronous Programming L anguages

In the past twenty years, synchronous programming languages
have been developed that distinguish clearly between temporal

control and logical control:
Initialize Memory
For each clock tick (or input event) do
Read | nputs
Compute Outputs
Update Memory

LUSTRE: Used for the development of the flight critical control
software in Airbus planes

ESTEREL: Used in telecommunication

Ref: Beneviste, A et. Al.. The Synchronous Languages, Twelve years later
Proc. of the IEEE Vol 91, Nr. 1, Jan 2003, p. 64-84
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| nterface

Interface: A point of interaction between a system and its
environment

Linking Interface: Aninterface of a component through
which it is connected to other components.

Service Providing LIF (SPLIF or LIF, for short): A LIF
where the real-time service of acomponent is provided to its
environment

Service Requesting LI1F (SRLIF): A LIF whereaservicels
requested from another component

Interface Model: The model of the concepts auser hasin
mind when he/she relates the meaning of the chunks of
Information in a message to his’/her conceptual world.
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| nterfaces of a Node--M essages ®

Diagnostic and Management | nterface
(Boundary Scan in Hardware Design)

D¢
Local «—

R Linking

<« ppiication lﬁ Interface (SPLIF or LIF)
Interfaces &2

= Software Relevant for Composability

?

SRLIF&

Configuration Planning Interface
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The Three lnterfaces

Thethreeinterfaces of an embedded system node:

Realtime Service (RS) Interface--LIF:
¢ In control applications periodic

¢ Contains RT observations

¢ Timesensitive

Diagnostic and M aintenance (DM) Interface:
¢ Sporadic access
¢ Requires knowledge about internals of anode (Restrictionsin
order to protect |P)
¢ Not time sensitive

Configuration Planning (CP) Interface;

¢ Sporadic access

¢ Usedtoinstall anodeinto anew configuration
¢ Not time sensitive
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SPLIF or LIF isImportant for Composability

For the temporal composability, only the LIF interface is relevant.
An LIF (e.g., acontrol algorithm) must specify:

¢ Atwhat point intimethe input information isdelivered to a
module (temporal pre-conditions)

¢ At what point in time the output information must be produced by
the module (temporal post-conditions).

¢ The properties of the intended information transformation
provided by the module (a proper model)

Focus on M essage Based | nterfaces!
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A Composition Involving three LIFs

Linking Interfaces

iy

i

.2 -

22T
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Four Principles of Composability (LIF)

(1) Independent Development of the Components (Architecture)
The message interfaces of the components must be precisely
specified in the value domain and in the temporal domain in order
that the component systems can be developed in isolation.

(2) Stability of Prior Services (Component | mplementation)
The prior services of the components must be maintained after the
Integration and should not fail if apartner fails.

(3) Performability of the Communication System (Comm. System)
The communication system transporting the messages must meet the
given temporal requirements under all specified operating
conditions.

(4) Replica Deter minism (Architecture)
Replica Determinism is required for the transparent implementation
of fault tolerance
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The LIF Specification hidesthe | mplementation

Component

Operating System

Middleware

Programming Language
WCET

Scheduling

Memory Management

Etc.
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Viewsof a System: Four Universe Model

User Level

Meaning of Data Types

|nformational Level
Data Types

Logical Level

Bits

Physical Level
Analog Signals

Avizienis, FT
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CS 12,1982

Meta-level Specification
| nterpretation by the User

Operational Interface Specification
Value and Temporal
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| nterface Specification

Operational Specification:

¢ Operational Input I nterface Specification
 Syntactic Specification
e Temporal Specification
e Input Assertion

¢ Operational Output Interface Specification
 Syntactic Specification
» Temporal Specification
 Output Assertion

¢ Interface State

Meta-level Specification:

¢ Meaning of the data el ements. Means-and-ends model
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Composability in Distributed Systems

I ntroduction
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A Component may support many LIFs

vice X

>

ServiceY

«—

" e
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Property Mismatches at | nterfaces

Property

Physical, Electrical
Communication protocol

Syntactic
Flow control

Incoherence in naming
Data representation

Temporal

Dependability
Semantics

© H. Kopetz 06/07/2003

Example

Line interface, plugs,
CAN versus J1850

Endianness of data

Implicit or explicit,
Information push or pull

Same name for different entities

Different styles for data representation
Different formats for date

Different time bases
| nconsistent time-outs

Different failure mode assumptions
Differences in the meaning of the data
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Boundary Lineversus I nterface System (15)

BL
Subsy stem < Subsy stem
A B
BL BL
Subsystem S | SUDSystem
A B
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Distributed I nterface File
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Interface
Component

(may be empty)

omponent B

S7
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Elementary vs. Composite I nterface
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Consider aunidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).

We distinguish between:

Elementary
| nterface:

Composite
Interface:

Sender

Control

Sender

Recelver

Recelver

Example:

state message
In aDPRAM

Queue of
event messages

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromisesther independence.
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Elementary vs. Composite I nterface

Consider aunidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).

We distinguish between:

Elementary
| nterface:

Composite
Interface:

Sender

Control

Example:

state message
in aDPRAM

Queue of
ent messages

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromisesther independence.
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| nfor mation Push vs. | nformation Pull

| nfor mation Push Interface: Information producer pushes
Information on information consumer (e.g., telephone, interrupt)

|nformation Pull Interfaces: |nformation consumer requests
Information when required (e.g, emalil).

What is better in real-time systems?--For whom?

_ Control
Information Sender |7 ’L .
Push eceiver
Information | o ([deeeeeeeeees |
PUl| Sender | Receiver
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Unidirectional | nformation Transfer o

Event-Message- Event Triggered:
Sender |g--p S DN NS <Nl 16> Recelving
Task Task
ueue ueue
| nformation Push | nformation Push

State Messsage- Time Trigger ed:

Sender |.-p CNI A" “Al CNI  |quees| Recaiving

Task DPRAM DPRAM Task
|nformation Push |nformation Pull
----- » Control
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Architecture Design IsInterface Design *

A good interface within a distributed real-time system

¢ Isprecisaly specified in the value domain and in the
temporal domain,

¢ providesthe relevant abstractions of the interfacing
subsystems and hides the irrelevant details,

¢ leadsto minimal coupling between the interfacing
subsystems,

¢ limits error propagation across the interface,
¢ Conformsto the establisned architectural style
and thus introduces structure into a system.
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