Model-driven Deployment & Configuration of Component-based Systems

Krishnakumar Balasubramanian, Boris Kolpackov, Tao Lu, Aniruddha Gokhale & Douglas C. Schmidt
Vanderbilt University

July 7, 2004
Overview

• Deployment & Configuration of systems
 – Introduction
 – Challenges

• Platform Independent Component Modeling Language (PICML)
 – How PICML addresses the challenges?

• Deployment And Configuration Engine (DAnCE)

• XML Schema Compiler (XSC)
Deployment & Configuration (D&C) Spec

• Specification defines deployment of component-based applications

• Intended to replace Packaging & Deployment chapter of CCM specification

• Meta-information is captured using XML descriptors

• Platform Independent Model (PIM)

• Defined in two dimensions
 – Data models vs. management (run-time) models
 – Component software vs. target vs. execution
Platform-independent Model (PIM) Dimensions

- Modeling view-points
 - Conceptual, logical, & physical view-point
- Platform-independent model
 - Conceptual & logical viewpoint of deployment & configuration
- Defined in two-dimensions

<table>
<thead>
<tr>
<th>PIM</th>
<th>Data Model</th>
<th>Run-time Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Software</td>
<td>Meta-data to describe component based applications and their requirements</td>
<td>Interfaces to browse, store and retrieve such meta-data</td>
</tr>
<tr>
<td>Target</td>
<td>Meta-data to describe heterogeneous distributed systems & their capabilities</td>
<td>Interfaces to collect & retrieve such meta-data and commit resources</td>
</tr>
<tr>
<td>Execution</td>
<td>Meta-data to describe a specific deployment of an application into a distributed system</td>
<td>Prepare environment, Execute on target to Deployment plan, manage lifecycle</td>
</tr>
</tbody>
</table>
PIM Mapping to CCM

• Physical viewpoint
 – Mapping from PIM to platform specific model (PSM) for CCM

• Set of transformations
 – T1 → PIM to PSM for CCM
 – T2 → PSM to
 • PSM for IDL
 • PSM for XML

• Set of mapping rules
 – M1 → PSM to IDL
 – M2 → PSM to XML schema
D&C Activities

- Descriptors are passive entities
- Manipulated by Actors
- Different Stages
 - Development
 - Developer
 - Assembler
 - Packager
 - Target
 - Domain Administrator
 - Deployment
 - Repository Administrator
 - Planner
 - Executor
- Actors are abstract
Challenges in Deployment & Configuration

- **Context**
 - Configuring & Deploying component-based applications using XML meta-data

- **Problem**
 - Meta-data split across multiple XML descriptors
 - Inter-dependencies between descriptors
 - XML is error-prone to read/write manually
 - No guarantees about semantic validity (only syntactic validation possible)
 - If meta-data is wrong, what about my data?
PICML

- **Solution**
 - Platform Independent Component Modeling Language (PICML)
 - Modeling paradigm developed using Generic Modeling Environment (GME)
 - Capture dependencies visually
 - Define semantic constraints using Object Constraint Language (OCL)
 - Generate domain specific meta-data from models
 - “Correct-by-construction”
RobotAssembly Model in PICML
Types of PICML generated meta-data

- **Component Interface Descriptor (.ccd)**
 - Describes the interface, ports, properties of a single component

- **Implementation Artifact Descriptor (.iad)**
 - Describes the implementation artifacts (e.g., DLLs, OS, etc.) of a single component

- **Component Package Descriptor (.cpd)**
 - Describes multiple alternative implementations of a single component

- **Package Configuration Descriptor (.pcd)**
 - Describes a specific configuration of a component package

- **Component Implementation Descriptor (.cid)**
 - Describes a specific implementation of a component interface; contains inter-connection information

- **Component Deployment Plan (.cdp)**
 - Plan which guides the actual deployment

- **Component Domain Descriptor (.cdp)**
 - Describes the target domain of deployment

- **Component Packages (.cpk)**
 - Grouping of all of the above
Example output from PICML

```
<!--Component Implementation Descriptor(.cid) associates components with impl. artifacts-->
<Deployment:ComponentImplementationDescription>
  <label>GPS Implementation</label>
  <UUID>154cf3cd-1770-4e92-b19b-8c2c921fea38</UUID>
  <implements href="GPS.ccd"/>
  <monolithicImpl>
    <primaryArtifact>
      <name>GPS Implementation artifacts</name>
      <referencedArtifact href="GPS.iad"/>
    </primaryArtifact>
  </monolithicImpl>
</Deployment:ComponentImplementationDescription>
```
Deployment And Configuration Engine (DAnCE)

- Gather resource information.
- Local—Global resource management.
 - Commit resource
 - Verify available resource.
- Application configuration basing on the configuration generated by the PICML tool set.
 - Component configuration
 - Connection configuration
- Deploy and assemble the application.
 - Component deployment
 - Connection

Parallel
DAnCE Resource Management

- Execution Manager creates DomainApplicationManagers
- NodeManager joins a Domain
- NodeManager commits resource to the Target manager for an application.
- Target manager manages global resource.
- Resource types are undefined.
Node and Domain

- Domain* focuses on the global issues.
- Node* focuses on the local issues.

- ApplicationManager:
 - startLaunch() & destroyApplication()

- Application:
 - finishLaunch() & start()
Prepare Plan

On this stage: A plan is disassembled and distributed to local targets.
Start Launch and Finish Launch

startLaunch: Components & Homes are created and configured.

finishLaunch: Connections are made.
XML Schema Compiler (XSC)

- **Context**
 - Increasing use of XML vocabularies as a data exchange format
- **Problem**
 - Standard XML APIs (SAX, DOM) are too generic and typeless
 - Results in a hard to implement/use/maintain in-memory representations.
- **Solution**
 - XML Schema Compiler
 - Generates statically-typed in-memory representation from schema
 - Parser and traversal mechanism for C++ or IDL.
Concluding Remarks

- Model-driven Deployment & Configuration
 - PICML
 - Models Component-based systems
 - Improves design-time validation of systems
 - Generates component meta-data
 - XSC
 - Relieves XML parsing related activities from programmers
 - DAnCE
 - Deploys component-based systems
 - Focus of future activities
- All tools available from
 - http://cvs.doc.wustl.edu (DAnCE, XSC)
 - http://cvs.dre.vanderbilt.edu (CoSMIC)