Model-Based Integration of Component-Based Embedded Systems:

A Case Study

Mark Schulte

The Boeing Company
Phantom Works
St. Louis, MO

This work was sponsored by the DARPA/IXO Model-Based Integration of Embedded Software program, under contract F33615-00-C-1704 with Air Force Research Laboratory Information Directorate, Wright-Patterson Air Force Base.
Outline

• DARPA Model-Based Integration of Embedded Systems (MoBIES) challenges and technology
 – Multi-view Modeling
 – Model-based Analysis
 – Model-based Composition
• MoBIES-enabled Development Process
• MoBIES toolchain
• Experimental Approach and Results
• Transitioning the Technology
• Conclusion
Model-Based Integration of Embedded Systems

Challenge Problems
Rapid, Predictable Integration And Deployment Of Component-Based Embedded Systems
- Inter-Component Integration Addressing Cross-Cutting Concerns
- Static Component-Level Resource Management Analysis

Experimentation and Demonstration
- Design-Time Technology Experiments
- Run-Time and Design-Time Metrics
 - Performance
 - Cost, Schedule, Quality

Open Experimental Platform Research
Open products to integrate, verify, and transition embedded software integration technology
- Primitive Real-Time CORBA Component Model Support
- Performance Instrumentation
- Representative Product Scenarios Highlighting Cross-Cutting Concerns

Technology Development Research
Model-based embedded system component integration tools and techniques
- Multi-View Modeling of Cross-Cutting Constraints
- Meta-Code Generation
- Framework Coupling and Merging

Rapid Embedded System Configuration For Evolving Warfighter Needs: Model Driven Architecture Applied To Embedded System Configuration
Challenges for Model-Based Component Integration

Multi-view modeling

- Primary and backup component types and modes
- Event and Invocation dependencies between components
- Threads, processes, processors, allocation of components
- QoS (rates, importance, resource requirements)
- Integrate multiple views

Model-based analysis

- Apply analytic methods to the design models to ensure satisfaction of cross cutting embedded constraints
 - Event dependencies, timing and resource issues, schedulability

Model-based system configuration

- Use system models to generate integration code needed to assemble a system from components
Input Translation

- The UML Interface provides access to attributes specific to the components represented by the stereotyped classes in Rose
- Also provides XML export capability of this information from Rose
ESML Deployment View
Component Allocation

All Component instances are shown on the process diagram and mapped to a thread (if event-driven).

Component references and thread references are associated with actual elements on an Interaction diagram.
Model Analysis

Full graphs available or forward/backward slices from a selected component
ESML workflow diagram in GME
Data Translations using OTIF

- Log in as the appropriate tool adaptor type (e.g. PRISM_PUBLISHER)
- Drag the document into the workspace area (e.g. OEP30_ACL.xml)

Go back to the Settings tab and change the tool adaptor type (ESML_RECEIVER_PUBLISHER) and subscribe to the appropriate paradigm (ESML) on the Workspace tab and wait for the converted file to appear at the backplane as shown on the previous slide.
Experimentation Approach

Development Scenarios and ...
Product Scenarios...

...Comprise Experiments

<table>
<thead>
<tr>
<th>PS 1</th>
<th>PS 2</th>
<th>PS 3</th>
<th>PS 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 1-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DS 1</th>
<th>DS 2</th>
<th>DS 3</th>
<th>DS 4</th>
<th>DS 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Evt Analysis</td>
<td>Scheduling</td>
<td>Fault Toler.</td>
<td>Full</td>
</tr>
<tr>
<td>Exp 2-1</td>
<td>Exp 2-2</td>
<td>Exp 3-1</td>
<td>Exp 4-3</td>
<td>Exp 5-3</td>
</tr>
<tr>
<td>Exp 2-3</td>
<td>Exp 2-4</td>
<td>Exp 3-2</td>
<td>Exp 4-4</td>
<td>Exp 5-4</td>
</tr>
<tr>
<td>Exp 3-3</td>
<td>Exp 3-4</td>
<td>Exp 3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp 5-3</td>
<td>Exp 5-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real-Time and Embedded Systems Workshop
July 2004
Experimental Results

- Validated feasibility of approach/process
- Integrated tool sets
 - Bidirectional AIF and OEP Configuration Interface support
 - Incremental updates from design model changes
 - Open Tool Integrated Framework (OTIF) under investigation
 - Influence and refine interfaces via OMG MIC
- Individual tools
 - Selected tools targeted for transition
 - Scalability and usability issues remain
 - Continuing support through ESCHER
- Aggregate productivity of Component Integrators increased
Savings in Configuration

• 2-4 times longer to configure the system in the modeling environments as opposed to working in the XML directly

• Significant advantages to modeling (2X to 4X faster) as the complexity of the scenarios and the skill of the modelers using the tools increased (as well as the maturity of the tools involved)
Savings to reconfigure, rebuild and execute the scenario when errors discovered

- Errors discovered (build and run)

- Time spent to fix those errors and rebuild

For the Representative SP scenario, VU toolset resulted in 11.5x savings in time to find and fix errors.

For the Medium MP scenario, Honeywell toolset resulted in almost a 6x savings in time to find and fix errors.

But even when we were still chasing a whole lot of errors in the model, it still resulted in a 2x to 6x time savings!
Industry Technology Transition Efforts

• ESCHER (Embedded Systems Consortium for Hybrid Embedded Research)
 – Founding members: Boeing, Raytheon, GM
 – Creating repository for embedded system development tools, initially populated from DARPA programs
 – Joint government and industry funding of technology maturation

• OMG Model Integrated Computing (MIC) SIG
 – Goal is to influence standards and push interfaces, open tool frameworks and any other relevant technology (initially MoBIES-focused) into appropriate specifications
 • Will work closely with the RealTime, Embedded and Specification Systems PTF
Conclusion

• ~$50M In DARPA Research Has Created An End-To-End Development Approach For Model Driven Embedded Systems Development
 – Multiple run-time component models and supporting middleware
 • CORBA Component Model style components
 • Task Network style components
 – Model-based deployment
 – Analysis
 • Strong tool support for Component dependency information and Component allocation
 • Timing scheduling analysis being integrated via commercial tools
 – Automated configuration code
 – Large scale configuration experiments indicate significant advances in
 • Productivity
 • Understandability
 • Defect avoidance, reduction, and correction