A Performance Modeling and Simulation Approach to Software Defined Radio

OMG Real-time & Embedded Systems Workshop
Washington, DC, July, 2005

Long Ho & Shawkang Wu
Integrated Defense Systems
The Boeing Company
Anaheim, CA
Typical M&S Approach

- Descriptive Analysis
 - Problem formulation
 - Input source collection and analysis
 - Model development, verification and validation
 - Scenario simulation and performance evaluation
Problem Formation

- **Capability Verification**
 - Verify that the capacity of the hardware architecture satisfies the operational need of the radio and waveform software for a particular JTR Set configuration.

- **Performance Analysis**
 - Analyze end-to-end latency, component throughput, data and control bottlenecks meets resource loading and critical timing requirements.

- **Portability Validation**
 - Validate that a particular waveform is properly partitioned to match the capacity of the available hardware resources.
 - to maximize software portability while satisfying application performance.
Input Source Collection and Analysis

- **Source Collection**
 - Documents
 - SCA and its Supplements
 - RTOS, CORBA specifications
 - Waveform application specification
 - Radio application specification
 - JTR architecture specification
 - Estimate and measure performance parameters

- **Source Analysis**
 - Identify controllable and uncontrollable inputs
 - Identify constraints on the decision variables
 - Define system performance measure
Model Development Roadmap

Timeline for this roadmap is not shown
SCA Architecture
Modeling of Hardware Architecture

The architectural model describes the hardware resources used in processing or transporting the radio and waveform application data.

- Create Models of Resource Building Blocks
- Build Models of HW Components
- Generate Models of HW Architecture

Inputs for HW architecture model are from JTR hardware specifications.

Simulation parameters for a HW component are resource name and capacity.
SCA Generic Building Block

Software Block A

Software Block B

Internal Data Flow (Small Latency)

External Data Flow (Large Latency)

Control Flow
JTR Set Architecture

IO HW

Red GPP 400 MIPS

Black GPP 400 MIPS

DSP 800 MIPS

RF HW
Tool Selection

- Co-Design tools provide two orthogonal views of a system
 - Architecture and function Views - which are linked by a partitioning specification
 - The capability for simulation of virtual system prototype
- A Co-Design tool by Foresight Systems
Functions to Architecture Mapping
Generic Communication Model

- Transmit
- Receive
- Control
Scenario I - Simulation Configuration

Utilization

- Red GPP
 \[0.00375 \text{ sec} \times 400 \text{ MI/sec} / 4 \text{ process} = 0.375 \text{ MI} / \text{ process}\]

- Black GPP
 \[0.00375 \text{ sec} \times 400 \text{ MI/sec} / 2 \text{ process} = 0.75 \text{ MI} / \text{ process}\]

- DSP
 \[0.00375 \text{ sec} \times 800 \text{ MI/sec} / 2 \text{ process} = 1.5 \text{ MI} / \text{ process}\]

- Local Port
 \[0.00125 \text{ sec} \times 1/10 \times 100 \text{ Mb/sec} = 0.0125 \text{ Mb}\]

- Remote Port
 \[0.00125 \text{ sec} \times 5/10 \times 20 \text{ Mb/sec} = 0.00125 \text{ Mb}\]

Total Latency

- Processor Delay + Local Transport Delay + Remote Transport Delay
 \[= (3 \times 0.00375) + (5 \times 0.0125 \text{ Mb} / 100 \text{ Mbps}) + (3 \times 0.0025 / 20 \text{ Mbps})\]
 \[= 0.01125 + 0.000625 + 0.001875 = 0.01375 \text{ sec}\]
Case Studies

- Scenario II – Verify HW Capability
 - Reduce Black GPP from 400 to 200 MIPS
 - Data throughput reduced by 33%
 - Black GPP utilization increased to 100%
 - Latency increased by 68%

- Scenario III – Validate SW Portability
 - Re-map the modem software component from DSP resource to Black GPP resource
 - Data throughput reduced by 33%
 - Black GPP utilization increased to 100%
 - Latency increased by 119%
Scenario I – Resource Utilization

![Graph showing processor utilization and data throughput over time for different processors.]
Scenario I - Latency

Distribution Latency (sec)

Accumulative Latency

Latency Distribution
Accumulative Latency

Resource Consumers
Scenario II – Resource Utilization

![Graph showing resource utilization over time](image)

- **Processor Utilization (%)**
- **Data Throughput (bps)**

Legend:
- Red GPP -- Scenario I
- Black GPP -- Scenario I
- DSP -- Scenario I
- Data Throughput -- Scenario I
Scenario II – Latency

Distribution Latency (sec)

Accumulative Latency

Latency Distribution
Average Latency Distribution -- Scenario I
Accumulative Average Latency -- Scenario I

Resource Consumers
Scenario III - Resource Utilization
Scenario III - Latency

![Graph showing latency distribution and accumulated latency for different processes and resource consumers.](image-url)
Conclusion

- Validated that hardware capability satisfied resources required by waveform software
- Validated that a waveform partitioned to match hardware resources, and maximized software portability and performance
- Co-design approach helps to optimize flexibility and performance
- It minimizes risks and maximizes chance of successful completion
Future Work

- Trade studies on
 - Message priority and length
 - Data throughput and latency
 - Component queue length
 - Probability distribution of data input/output