
Continuous System Integration of Distributed Continuous System Integration of Distributed 
RealReal--time and Embedded Systemstime and Embedded Systems

James H. Hill and Douglas Schmidt
Vanderbilt University 

Nashville, TN, USA

Vanderbilt University 
Nashville, Tennessee

Institute for Software 
Integrated Systems

OMG’s Workshop on Distributed Object Computing for 
Real-time and Embedded Systems (RTWS ‘08)

July 14 – 16, 2008
Washington, DC, USA



CiCUTS : OMG’s RTWS 2008 James H. Hill

Motivation: SOA-based System Development
• Enterprise DRE systems are 

increasingly being developed using 
service-oriented architectures 
(SOAs)

– e.g., CCM, J2EE, & Microsoft 
.NET

• SOAs address many software 
development challenges

– e.g., reuse of core application- 
logic, improving application 
scheduability & reliability

• SOAs, however, incur unresolved 
problems that have adverse affects 
on development-time

– e.g., serialized-phased where 
application level components 
are not tested until long after 
infrastructure level 
components



CiCUTS : OMG’s RTWS 2008 James H. Hill

Application components 
developed after 

infrastructure is mature

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

System 
infrastructure 
components 

developed first

Serialized Phasing is Common in Large-scale Systems (1/2)



CiCUTS : OMG’s RTWS 2008 James H. Hill

Serialized Phasing is Common in Large-scale Systems (2/2)

Development Timeline

Le
ve

l o
f A

bs
tr

ac
tio

n

Integration 
Surprises!!!

System integration 
& testing

Finished development



CiCUTS : OMG’s RTWS 2008 James H. Hill

Model-Driven System Execution Modeling (SEM) Tools

Enables early testing on target infrastructure throughout development lifecycle. 
SEM tools, however, have limited testing capabilities to support continuous 

system testing & evaluation.

• System execution modeling (SEM) tools are a promising technology for 
addressing serialized-phasing problems

Component Workload Emulator (CoWorkEr) Utilization Test Suite (CUTS)
http://www.dre.vanderbilt.edu/CUTS



CiCUTS : OMG’s RTWS 2008 James H. Hill

Solution Approach: Integrate SEM Tools with Continuous 
Integration Environments

• Continuous integration environments 
provide mechanisms that continuously 
validate software quality by:
1.performing automated system builds 

upon source code commit or 
successful execution & evaluation of 
prior events Sources Binaries



CiCUTS : OMG’s RTWS 2008 James H. Hill

Solution Approach: Integrate SEM Tools with Continuous 
Integration Environments

• Continuous integration environments 
provide mechanisms that continuously 
validate software quality by:
1.performing automated system builds 

upon source code commit or 
successful execution & evaluation of 
prior events,

2.executing suites of unit tests to 
validate basic system functionality,



CiCUTS : OMG’s RTWS 2008 James H. Hill

Solution Approach: Integrate SEM Tools with Continuous 
Integration Environments

• Continuous integration environments 
provide mechanisms that continuously 
validate software quality by:
1.performing automated system builds 

upon source code commit or 
successful execution & evaluation of 
prior events,

2.executing suites of unit tests to 
validate basic system functionality,

3.evaluating source code to ensure it 
meets coding standards, &

4.executing code coverage analysis



CiCUTS : OMG’s RTWS 2008 James H. Hill

Solution Approach: Integrate SEM Tools with Continuous 
Integration Environments

• Continuous integration environments 
provide mechanisms that continuously 
validate software quality by:
1.performing automated builds commit 

or successful execution & evaluation 
of prior events,

2.executing unit tests to validate basic 
system functionality,

3.evaluating source code to ensure it 
meets coding standards, &

4.executing code coverage analysis
• CiCUTS (i.e., combination of continuous 

integration environments with CUTS) 
uses integration tests managed by 
continuous integration environments 
that dictate the behavior of CUTS

CiCUTS helps developers & testers ensure system QoS meets—or is close to 
meeting—its specification throughout the development lifecycle.



CiCUTS : OMG’s RTWS 2008 James H. Hill

CiCUTS Integration Challenges

Integration of CUTS with 
CruiseControl.NET requires agreement 
of the following profiling decisions:

How to present metrics to 
continuous integration 

environment??

What profile metrics 
to collect?

?

How do you capture 
metrics effectively?

Integration Alternatives
• Extend profiling infrastructure of SEM tools to capture domain-specific metrics
• Capture domain-specific performance metrics in format understood by 

continuous integration environments
• Capture domain-specific performance metrics in an intermediate format



CiCUTS : OMG’s RTWS 2008 James H. Hill

Alternative 1: Extending Profiling Infrastructure

Context
• SEM tools provide profiling 

infrastructures to collect predefined 
performance metrics
• e.g., execution times of 

events/function calls or values 
of method arguments

Advantages
• Simplifies development of profiling 

framework
• e.g., can leverage existing data 

collection techniques
Disadvantages
• Must ensure domain-specific 

metrics do not effect existing SEM 
tool performance

• SEM tools may be proprietary & 
extension may be prohibited

SEM tool profiling 
infrastructure

Proprietary data 
store

Do extensions affect SEM 
infrastructure performance?



CiCUTS : OMG’s RTWS 2008 James H. Hill

Alternative 2: Capture Metrics In Format Understood By 
Continuous Integration Environment

Context
• Continuous integration environments 

use proprietary formats to store & 
analyze data

• May be feasible to collect & present 
metrics in format understood by 
continuous integration environments

Advantages
• Simplifies integration at the 

continuous integration side since 
format is known a priori

Disadvantages
• Requires a custom testing 

framework (adapter) to present data 
• Tightly couples SEM tool with 

continuous integration environment

User-defined data 
collection technique

Proprietary data 
store

Tight coupling



CiCUTS : OMG’s RTWS 2008 James H. Hill

Alternative 3: Capture Metrics In Intermediate Format

Context
• Continuous integration & SEM tools 

each have proprietary methods
• e.g., data collection & 

representation
• May be feasible to store data in 

intermediate format that is not bound 
to a specific tool

Advantages
• Decouples continuous integration 

environment from the SEM tool
• Collection can be transparent to 

existing SEM tool infrastructure
Disadvantages
• Requires agreement of intermediate 

format & implementation of data 
collectors & adapters on either side 
of the data store

Proprietary 
collection format

Proprietary data format

Data bridge between 
either environment



CiCUTS : OMG’s RTWS 2008 James H. Hill

Functionality & Structure of CiCUTS

• Chose integration alternative 3 
because of its decouple design 
feature
– e.g., developers can select 

different integration systems 
or SEM technologies, but 
leverage same technique

1.Loggers transparently capture 
domain-specific performance 
metrics via user-defined log 
messages

2.Intermediate database stores 
metrics collected by loggers for 
analysis

3.CruiseControl.NET executes & 
analyzes CUTS tests

4.Benchmark Node Controller 
execute commands received from 
CruiseControl.NET on the testing 
environment
• e.g., terminate container 

applications



CiCUTS : OMG’s RTWS 2008 James H. Hill

Application of CiCUTS to an Enterprise DRE System

• RACE is a component-based 
DRE system that manages 
operational strings

• RACE supports two types of 
operational string deployments
• Static – deployments created 

offline where components are 
assigned to hosts

• Dynamic – deployments 
created online, but component 
assignment to host is based on 
operating conditions

• Baseline scenario - higher priority 
operational strings must have 
longer lifetime than lower priority 
operational strings
• e.g., under low resource 

availability



CiCUTS : OMG’s RTWS 2008 James H. Hill

Experimental Design of RACE Baseline Scenario
CiCUTS Hypotheses
1. Developers can understand behavior 

& performance of infrastructure-level 
applications before system integration

2. Developers can ensure QoS 
performance is within specifications 
throughout the development lifecycle 
more efficiently & effectively than 
waiting until system integration to 
evaluate QoS performance

Experiment Design
• Constructed 10 identical 

operational strings with different 
importance values & used CUTS 
to generate implementation
• A – H: 90
• I – J: 2

• Augmented RACE source code 
with log messages for CiCUTS to 
intercept

• Created Nant scripts for CiCUTS 
to manage & execute

• e.g., deploy/teardown 
operational string, 
send commands to 
Benchmark Node 
Controller, & query 
database for results



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 1: Understanding Behavior & Performance of 
Infrastructure Level Components (1/2)

Static Deployment 
Log Message 
Reconstruction

Dynamic Deployment 
Log Message 
Reconstruction

Start of test

Start of test



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 1: Understanding Behavior & Performance of 
Infrastructure Level Components (1/2)

Static Deployment 
Log Message 
Reconstruction

Dynamic Deployment 
Log Message 
Reconstruction

Kill node with higher 
importance operational string

Kill node with higher 
importance operational string



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 1: Understanding Behavior & Performance of 
Infrastructure Level Components (1/2)

Static Deployment 
Log Message 
Reconstruction

Dynamic Deployment 
Log Message 
Reconstruction

Higher importance 
operational strings still offline

RACE recognizes 
node failure

RACE teardown lower 
importance operational strings

RACE redeploys higher 
operational strings



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 1: Understanding Behavior & Performance of 
Infrastructure Level Components (1/2)

Static Deployment 
Log Message 
Reconstruction

Dynamic Deployment 
Log Message 
Reconstruction

The lifetime of higher importance operational strings is greater than the lifetime 
of lower importance operational strings



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 1: Understanding Behavior & Performance of 
Infrastructure Level Components (2/2)

Conclusion: CiCUTS helps developers understand the behavior & performance 
of infrastructure level components

Benefits of CiCUTS
• Do not have to rely on ad 

hoc techniques to determine 
behavior of RACE
• e.g.,manually inspecting 

& reconstructing 
distributed execution 
trace logs

• Simplified determining if 
RACE is performing as 
expected

• Performance evaluation of 
RACE can happen well 
before system integration 
time



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 2: Ensuring Infrastructure Performance is Within 
QoS Specifications

First execution of 
a performance test

Latest execution of 
a performance test



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 2: Ensuring Infrastructure Performance is Within 
QoS Specifications

Single performance 
test of RACE

Bar height represents 
dynamically deployed operational 

string lifetime improvement



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 2: Ensuring Infrastructure Performance is Within 
QoS Specifications

Target goal for improvement

Lower bound for improvement



CiCUTS : OMG’s RTWS 2008 James H. Hill

Hypothesis 2: Ensuring Infrastructure Performance is Within 
QoS SpecificationsBenefits of CiCUTS

• Simplifies the process of 
continuous performance 
evaluation

• Does not require developers to: 
1. Monitor project’s source for 

changes
2. Update test environment
3. Run performance tests
4. Associate tests results with 

detected modifications

Conclusion: CiCUTS helps ensure infrastructure performance is within is QoS 
specficiations throughout the development lifecycle



CiCUTS : OMG’s RTWS 2008 James H. Hill

Current & Future Research

Generalization of Testing & 
Analysis Framework

• Messages used to construct 
behavior graphs can be identified 
using high-level constructs
– e.g., “received {INT x} events”

• Given high-level constructs, data 
mining techniques can be applied 
to extract log messages of 
interest

• Values of interests can be 
extracted from log messages & 
used to generate behavior & 
performance graphs

Multiple Runs of Unit Test

generates

executes against

“received [[:digit:]]+ events”
regular expression



CiCUTS : OMG’s RTWS 2008 James H. Hill

Concluding Remarks

• SEM tools provide mechanisms for 
executing performance tests during 
the early stages of development

• CiCUTS address the problem of 
improving testing capabilities for 
SEM tools via continuous 
integration systems

• CiCUTS is, therefore, able to help:
1. Developers understand the 

behavior & performance of 
infrastructure level components

2. Ensure infrastructure 
performance is within is QoS 
specficiations throughout the 
development lifecycle

CUTS & CiCUTS is available in open-source format at the following location
http://www.dre.vanderbilt.edu/CUTS



CiCUTS : OMG’s RTWS 2008 James H. Hill

Questions


	Continuous System Integration of Distributed Real-time and Embedded Systems
	Motivation: SOA-based System Development
	Serialized Phasing is Common in Large-scale Systems (1/2)
	Serialized Phasing is Common in Large-scale Systems (2/2)
	Model-Driven System Execution Modeling (SEM) Tools
	Solution Approach: Integrate SEM Tools with Continuous Integration Environments
	Solution Approach: Integrate SEM Tools with Continuous Integration Environments
	Solution Approach: Integrate SEM Tools with Continuous Integration Environments
	Solution Approach: Integrate SEM Tools with Continuous Integration Environments
	CiCUTS Integration Challenges
	Alternative 1: Extending Profiling Infrastructure
	Alternative 2: Capture Metrics In Format Understood By Continuous Integration Environment
	Alternative 3: Capture Metrics In Intermediate Format
	Functionality & Structure of CiCUTS
	Application of CiCUTS to an Enterprise DRE System
	Experimental Design of RACE Baseline Scenario
	Hypothesis 1: Understanding Behavior & Performance of Infrastructure Level Components (1/2)
	Hypothesis 1: Understanding Behavior & Performance of Infrastructure Level Components (1/2)
	Hypothesis 1: Understanding Behavior & Performance of Infrastructure Level Components (1/2)
	Hypothesis 1: Understanding Behavior & Performance of Infrastructure Level Components (1/2)
	Hypothesis 1: Understanding Behavior & Performance of Infrastructure Level Components (2/2)
	Hypothesis 2: Ensuring Infrastructure Performance is Within QoS Specifications
	Hypothesis 2: Ensuring Infrastructure Performance is Within QoS Specifications
	Hypothesis 2: Ensuring Infrastructure Performance is Within QoS Specifications
	Hypothesis 2: Ensuring Infrastructure Performance is Within QoS Specifications
	Current & Future Research
	Concluding Remarks
	Questions

