
www.saabgroup.com
© Saab AB 2008 

Arlington, VA, 2008

Magnus Rundlöf
Lars Millberg

Model Driven DDS with Java
using OMG EMOF and OSGi



www.saabgroup.com2
© Saab AB 2008

Who are we?

� Lars Millberg and Magnus Rundlöf

� Saab AB, Saab Systems, Naval 
Systems Division Sweden

� Been working together for 1.5 years 
in an internal R&D project

� Worked a lot with open standards 
and model driven development



Introduction



www.saabgroup.com4
© Saab AB 2008

IDLGenerated 
Java types

QoS
Domain ID

etc.DDS Model
Manager

DDS

Application
Java code

Application
Java code

Model(s)

Application
code



Model Driven DDS



MDDS



Prerequisite: EMF



www.saabgroup.com8
© Saab AB 2008

Eclipse Modeling Framework

� A tool for domain-specific modeling

� Unifies three major technologies in modern software engineering

� A Java framework and code generation facility for building 
applications from structured (formal) data models

<xml/>



www.saabgroup.com9
© Saab AB 2008

The Ecore Model

� The modeling language 
of EMF

� Almost equivalent to 
OMG EMOF

� Essentially a simplified 
subset of the UML 
Class Diagram package



www.saabgroup.com10
© Saab AB 2008

EMF and MDDS

� MDDS heavily relies on EMF

� Three Ecore models constitute the MDDS Meta models

� Data Model

� QoS Model

� Interface Model

� Separated this way to enable reuse of data types and QoS settings

� The major part of code in MDDS is generated by EMF, including the 
Eclipse editors for creating and editing instances of the MDDS Meta 
classes



To the limits!



www.saabgroup.com12
© Saab AB 2008

EMF and MDDS 

� MDDS heavily relies on EMF

� Three Ecore models constitute the MDDS Meta models

� Data Model

� QoS Model

� Interface Model

� Separated this way to enable reuse of data types and QoS settings

� The major part of code in MDDS is generated by EMF, including the 
Eclipse editors for creating and editing instances of the MDDS Meta 
classes



The meta models…



www.saabgroup.com14
© Saab AB 2008

MDDS Data Model

� A straight-forward 
model of the DDS 
specific IDL subset

� Instances of these 
model objects are 
used to specify user 
data types in MDDS



www.saabgroup.com15
© Saab AB 2008

MDDS QoS Model

� Straight-forward model 
containing all the policy
containers and all the QoS 
policies

� Instances are applied to
the default QoS settings
in runtime



www.saabgroup.com16
© Saab AB 2008

MDDS Interface Model

� Two concrete interface 
types:

� Subscriber interface

� Publisher interface

� An instance contains 
all pieces of 
information needed to 
subscribe or publish 
on a topic



Comparison to traditional DDS



www.saabgroup.com18
© Saab AB 2008

General 
equivalents

TypeSupport, 
TypeCode, Seq

Support Classes

EObjectsJava ObjectsInstances

EClasses, 
EEnums, 

EDataTypes

Java Classes, 
Java Data Types

Type Language 
Mapping

Data ModelIDLType Declaration

Model Driven DDS 
with Java

Traditional DDS 
with Java

Man-made,
persisted

Generated
off-line, persisted

Generated
on-line



www.saabgroup.com19
© Saab AB 2008

«java object»«java object»«java object»«java object»

foo : EObjectfoo : EObjectfoo : EObjectfoo : EObject

class = fooClassclass = fooClassclass = fooClassclass = fooClass

eSettings = {eSettings = {eSettings = {eSettings = {

i=42, s=”Hello” }i=42, s=”Hello” }i=42, s=”Hello” }i=42, s=”Hello” }

«java object»«java object»«java object»«java object»

foo : Foofoo : Foofoo : Foofoo : Foo

i = 42i = 42i = 42i = 42

s = ”Hello”s = ”Hello”s = ”Hello”s = ”Hello”

Instances

«java object»«java object»«java object»«java object»

fooClass : EClassfooClass : EClassfooClass : EClassfooClass : EClass

name = ”Foo”name = ”Foo”name = ”Foo”name = ”Foo”

eStructuralFeatures = {eStructuralFeatures = {eStructuralFeatures = {eStructuralFeatures = {

name = ”i” eType = EInt,name = ”i” eType = EInt,name = ”i” eType = EInt,name = ”i” eType = EInt,

name = ”s” eType = name = ”s” eType = name = ”s” eType = name = ”s” eType = 
EString }EString }EString }EString }

«java source»«java source»«java source»«java source»

public class Foo {public class Foo {public class Foo {public class Foo {

long i;long i;long i;long i;

String s; }String s; }String s; }String s; }

Type Language 
Mapping

«idl»«idl»«idl»«idl»

struct Foo {struct Foo {struct Foo {struct Foo {

long i;long i;long i;long i;

string s; };string s; };string s; };string s; };

Type Declaration

Model Driven DDS with 
Java

Traditional DDS 
with Java

Man-made,
persisted

Generated
off-line, persisted

Generated
on-line



www.saabgroup.com20
© Saab AB 2008

The MDDS Manager

� Simple API
� MDataReader createDataReader(MSubscriberInterface iface, 
MListener listener)

� MDataWriter createDataWriter(MPublisherInterface iface)

� Resource sharing

� Domain Participants, Subscribers and Publishers are shared wherever it is 
possible

� The MDDS Manager is implemented as an OSGi service



Prerequisite: OSGi



www.saabgroup.com22
© Saab AB 2008

Open Services Gateway initiative

� Dynamic module system for the Java Programming Language

� Open standard – Open Architecture

� Component model, binary re-use possible

� Components are called bundles

� Loose coupling

� SOA within a Java Virtual Machine

� www.osgi.org



www.saabgroup.com23
© Saab AB 2008

MDDS and OSGi

� Again: The MDDS Manager is an OSGi service (implemented in a 
bundle)

� The component using an MDDS interface lives in another bundle, and 
asks the OSGi runtime for the MDDS Manager service

� Using OSGi we can reload a data model in a running system

� …except we haven’t found a way to unregister a type. Vendor’s 
limitation or spec requirement?



www.saabgroup.com24
© Saab AB 2008

Benefits of Model Driven DDS

� Complete description of an interface – domain id, QoS settings etc. –
is kept in one place without a man in the middle

� Tuning QoS is easy

� If types are kept unchanged this can be done in a running program, works 
beautifully with OSGi.

� IDL files and nice-to-look-at documentation can be generated from the 
models with little effort



www.saabgroup.com25
© Saab AB 2008

Todo’s

� Extend to other vendors; OpenSplice, others?

� Implement remaining IDL constructs
� Unions, Value types

� Add remaining QoS policies to the QoS Model

� Wait-based data access

� Unregister types?

� Extend the editor
� Context menus (e.g. Goto Type Definition, Goto Publisher QoS)

� Refactoring

� Validation



Demo



www.saabgroup.com27
© Saab AB 2008

Demo

� Using Saab’s HMI Framework we 
have integrated a USB Missile 
Launcher

� Pre-conditions: a hacked launcher 
and an IDL for interfacing it



www.saabgroup.com28
© Saab AB 2008

Launcher IDL
(Namespace: com::saabgroup::enterprisebus::launcher)

struct LauncherStatus {
ModuleId moduleId; //@key
boolean allocated;
boolean firing;
boolean video;
LauncherConfigurationVideo videoConfiguration;

};

struct LauncherConfigurationVideo {
string host;
short port;
short maxFps;

}

struct LauncherControl {
ModuleId moduleId;
LauncherCommand command;
LauncherCommandMove move;
LauncherCommandSetVideo setVideo;

};

enum LauncherCommand {
MOVE,
FIRE,
STOP,
SET_VIDEO,
ALLOCATE,
DEALLOCATE

};

enum LauncherDirection {
UP,
DOWN,
LEFT,
RIGHT

};

struct LauncherCommandMove {
LauncherDirection direction;

};

struct LauncherCommandSetVideo {
boolean active;

};



www.saabgroup.com29
© Saab AB 2008

Linux (HMI node)JVM/OSGi

com.saabgroup.cms.
launcher.hmi

com.saabgroup.cms.
mdds

Linux (Launcher node) JVM/OSGi

com.saabgroup.cms.
launcherHTTP server

com.saabgroup.cms.
mdds

com.saabgroup.
enterprisebus.launcher

com.saabgroup.
enterprisebus.launcher

com.saabgroup.
enterprisebus.launcher

com.saabgroup.
enterprisebus.launcher

Setup

«topic»
name = “LauncherStatus”

type =
“com::saabgroup::enterprisebus::

launcher::LauncherStatus”

«topic»
name = “LauncherControl”

type =
“com::saabgroup::enterprisebus::

launcher::LauncherControl”



www.saabgroup.com30
© Saab AB 2008

www.saabgroup.com


