

High Assurance CORBA for Software Based Communications

Kevin Buesing

Objective Interface Systems
OMG SBC Workshop 2005

- Introduction
- What is High Assurance?
- How to Achieve High Assurance in Software
- Industry Standards
- Platforms Available
- How to Achieve a High Assurance ORB Profile
 - Keep It Simple
 - Languages and Subsets
 - IDL Subset
- Conclusion

- Safety-Critical or High-Assurance systems today require software that must meet stringent criteria
 - Reliability
 - Safety
 - Security
- Traditionally these systems have been custom designed
 - Expansion of this type of system => stove-pipe designs have become impractical
 - Looking to COTS

- Availability of COTS High Assurance RTOSes will create demand for same level of robustness in middleware
 - RTOS is only part of the solution
 - CORBA, Minimum CORBA and Real-Time CORBA specifications provide a solid foundation to begin addressing middleware needs

What is High Assurance?

- High Consequence Attached to System Failure
- Undeniable evidence required to validate proper system functionality
- Typical Fields
 - Flight Control Systems
 - **Secure Communication Devices**
 - Medical Surgery Equipment
 - Unmanned Aerial Vehicles
 - Military Command and Control Systems
 - Nuclear Reactors
- Expanding to Other Fields
 - Automotive
 - Voice over IP (911 calls)

- To the FAA:
 - One failure per 10^9 (1 Billion) hours of operation
 - How long *is* a Billion hours? Do the math!
 - $1,000,000,000 \text{ hours} \times \frac{1 \text{ day}}{24 \text{ hours}} \times \frac{1 \text{ year}}{365.25 \text{ days}}$
 - 114,077 *YEARS!*
 - For National Security Systems processing our most valuable data under severe threat:
 - Failure is *Unthinkable*
 - *How do we implement systems that we can trust to be this reliable?*

- High-Quality development process
 - Rigorous traceability from requirements to code
 - Quality assurance
- Predictable, rigorous base
 - Predictable language subsets
 - Predictable language runtime
 - High quality tools: compilers, linkers, operating systems

- Keep it simple
 - As small as possible
 - Restrict scope of evaluation
- Independently evaluated or certified
 - Certification currently varies greatly by industry

Overall goal: allow evaluation of software

- RTCA DO-178B, *Software Considerations in Airborne Systems and Equipment Certification*
 - Adopted by FAA
 - Encompasses the entire project
- ARINC-653, *Avionics Application Software Standard Interface*
 - Time and space partitioning to prevent cascading failure of applications
- ISO-15408, *Common Criteria for Information Technology Security Evaluation*
 - International standard for assurance in IT
- DCID 6/3, *Protecting Sensitive Compartmented Information Within Information Systems*
 - Procedures for storing, processing and communication of classified intelligence
 - U.S. Federal directive

- RTCA DO-178B, *Software Considerations in Airborne Systems and Equipment Certification*
- ARINC-653, *Avionics Application Software Standard Interface*
- ISO-15408, *Common Criteria for Information Technology Security Evaluation*
- DCID 6/3, *Protecting Sensitive Compartmented Information Within Information Systems*

Challenge: different standards for different industries

Challenge: Safety evaluation is done on a system.
Limited ability to re-use, discourages commercialization

<i>Common Criteria</i>	<i>MSLS / MLS Separation Accreditation</i>
Basic Robustness (EAL3)	System High Closed Environment
Medium Robustness (EAL4+)	System High Open Environment
High Robustness (EAL6+)	Multi Level Separation
<i>DCID 6/3 Protection Level 5</i>	<i>Multi Nation Separation Accreditation</i>
<i>DO-178B Level A</i>	<i>Failure is Catastrophic</i>

Challenge: different requirements for different goals

- Certifiable/Certified RTOS
 - Designed to conform to one or more standards
 - Three RTOS systems are under consideration to provide proof of concept:
 - Green Hills Software: INTEGRITY-178B
 - LynuxWorks: LynxOS-178
 - Wind River Systems: Platform for Safety Critical ARINC 653
- Future
 - MILS Separation Kernels (Green Hills, LynuxWorks, and Wind River)

Overall goal: allow evaluation of software

- Not Covered in the High Assurance ORB Profile
 - High-Quality development process
 - Not the subject of profile
 - Covered by DO-178B, etc.
 - Predictable, rigorous base - High quality tools
 - Independently evaluated or certified

Observation: Certification costs more than development

Overall goal: allow evaluation of software

- Covered in the High Assurance ORB Profile
 - Predictable, rigorous base
 - Predictable language subsets
 - IDL
 - target language
 - Keep it simple
 - Reduce code size of ORB run-time
 - Restrict code size of generated code

- Reduce code size of ORB run-time
 - Restrict functionality
 - Example: eliminate shutdown
 - Example: eliminate LocateForward
 - Resolve resources at program initialization - eliminate most/all dynamic behavior:
 - Thread creation.
 - Memory allocation.
 - Runtime symbol resolution.
 - Runtime path resolution (eg. virtual functions.)
 - Transport connections

- Reduce code size of generated code
 - Example: JTRS SCA IDL generates
 - 20K of C++ (ORBexpress for C++),
 - 144K of C++ (TAO)
 - 25K of Java (ORBexpress for Java)
 - 12.5K of Ada (ORBexpress for Ada)
 - Solution approach
 - Restrict IDL types
 - Look for other savings

- Pairs of profiles involved
 - One for IDL
 - One for the target programming language ("safe subset")
- Plus profile of language mapping
- Target Language Mappings
 - Current languages used for High Assurance
 - Ada – SPARC subset, Ravenscar run-time restrictions
 - C – Motor Industry Software Reliability Association (MISRA) C
 - C++ - not as popular
 - Current "safe subsets" being considered
 - Ada and C++ are the forerunners
 - C would require updating the CORBA C mapping

- Programming Language Considerations:
 - Late/Dynamic Binding must be avoided. So...
 - Limit or eliminate virtual inheritance/functions.
 - No exceptions allowed.
 - Code must be traceable, especially for certification. So...
 - No templates.
 - Limit/eliminate multiple inheritance.
 - Memory management.
 - IDL types that always have memory constrained limits.

- IDL Considerations: Limits will be based on ability to map to safe programming language subsets.
 - Different programming languages have different mappings for IDL constructs
 - E.g., fixed types map to
 - Native type in Ada,
 - ORB generated class in C++
 - Different programming languages should have a common IDL subset to promote interoperability,
 - E.g., fixed types
 - OK in Ada, not in C++
 - => Eliminate from profile
- Upcoming list is a work in progress

- Octet
- Boolean
- Char
- Enumerated Type
- Short
- Unsigned Short
- Long
- Unsigned Long
- Long Long
- Unsigned Long Long
- Float
- Double
- Array
- Structures

- Strings
- Sequences
- Unions
- Any
- Fixed

Challenge: what about Object References?

- Although significant challenges remain
 - Reducing lines of code
 - Reconciling restrictions of high assurance language subsets
- Significant progress has been made in defining a High Assurance CORBA standard
- It will be possible to define a CORBA subset suitable for High Assurance implementation
 - That retains "interoperability within the subset"
 - That offers advantages of CORBA
 - Portability
 - Time to market
 - Location transparency

- <http://www.omg.org/cgi-bin/docs?realtime/2005-05-02>
 - latest submission
 - In response to RFP - *realtime/2004-02-24*
- Submitters
 - [Objective Interface Systems, Inc.](#)
 - [Rockwell Collins, Inc.](#)