A Platform-Independent Model for Autonomously Reconfigurable User Equipment and Network Elements

Mr. Zachos Boufidis

University of Athens, Greece
boufidis@di.uoa.gr

Contributors:

Zachos Boufidis University of Athens, Greece boufidis@di.uoa.gr
Nancy Alonistioti University of Athens, Greece nancy@di.uoa.gr
Eleni Patouni University of Athens, Greece elenip@di.uoa.gr
Makis Stamatelatos University of Athens, Greece makiss@di.uoa.gr
Markus Muck Motorola Labs, France markus.muck@motorola.com
Didier Bourse Motorola Labs, France didier.bourse@motorola.com
Outline

✓ Scope and Vision

✓ Challenges

✓ Functional Modelling

✓ UML Model

✓ Conclusions
Scope & Vision (1)

Cognitive Reconfigurable Next-Generation Networks

Heterogeneous multi-radio systems
coupled with
all-IP core networks
integrating software/cognitive radio &
selfware capabilities
Scope & Vision (2)

A. RAT/RAN evolution
- **IEEE**: WPAN (802.15.3a, 802.15.4), WLAN (802.11a/g/n), WMAN (802.16a/d/e/h (WiMAX)), WRAN (802.22), SDR/CR-oriented standards (P1900), interoperability considerations for handover between heterogeneous networks (802.21 MIH)
- ArrayComm’s i-Burst, Flarion’s FLASH-OFDM, DoCoMo Gbps downlink packet transmission in field experiments
- HSDPA, E-UL, MBMS, Super 3G
- **3GPP LTE**: higher data rates with reduced latencies, increased spectral efficiency, lower power consumption at the TE, multi-RAT support, self-configuring RANs, and flexible functional split between RAN and CN

B. CN Evolution & Service Domain
- **3GPP SAE**: efficient network access selection according to operator policies and user preferences, inter-access mobility, benefit from the support of reconfigurable radio interfaces in the terminal
- **3GPP IMS**: session-based CN architecture using SIP: considered as the next-generation CN paradigm for service provision to wireless devices
- **ETSI TISPAN**: system enhancements to IMS for fixed broadband access
 - Network attachment (NASS), Resource and admission control (RACS), Emulation of legacy systems (PSTN/ISDN), “Core IMS”

C. Software-Defined Radio & Cognitive Radio
- **SDR Forum**: set of requirements/steps for downloading radio software to UE
- **Dynamic Spectrum Access & Exchange**

D. Plane Mgmt = ITU-T TMN FCAPS
- **Faults/Configuration/Accounting/Performance/Security**
 - Usually network-initiated: *managed systems*

Autonomics = S-CHOP
- Self-Configuration/Healing/Optimization/Protection
 - => *governed systems*
Challenges

What relevant problems are being solved?

1. Centralised client-server-based decision-making relationship between reconfigurable elements and attached network infrastructure

 Solution:
 Autonomic decision-making and self-management facilities

2. Monolithic control & management approaches for system architecture modelling

 Solution:
 Modular, intermediary, multi-plane and layer-based approach allowing independent evolution paths

3. Pre-installed features on equipment during manufacturing

 Solution:
 Software upgrades and component-based techniques for dynamic protocol replacement

4. Limited context and resource management

 Solution:
 Knowledge-based self-awareness of network elements allowing dynamic resource management
Functional Modelling (1)

End-to-end reconfiguration

✓ **Reconfiguration**: A set of *policy-driven tasks* for modifying the operation of a system, network node or UE, or functional entity

✓ **End-to-end notion**: user and control plane interactions may occur from source to destination

 => Should be coordinated by a *cohesive support plane*

Reconfiguration Management Plane (RMP):

✓ **Coordinated control and management functions** for

 => *governing* the interactions between the involved entities

 ⇒ *orchestrating the decision-making*

 ⇒ *coordinating the enforcement* of reconfiguration mechanisms

✓ **Enabler of autonomously reconfigurable elements**

 => Target mid-term reconfigurable elements: UE, BS

✓ self-generated policies based on context,

✓ peer-to-peer-style-controlled (3GPP: UE-PCRF),

✓ service-based locally-enforced reconfiguration strategies and policy rules
Functional Modelling (2)

OMG MDA PIM and 3GPP IRP specification stages

1] IRP Requirements:
 Conceptual and use cases definitions

2] IRP Information Service (IS)

2a) IRP IS:: Interface IRP
 Operations and notifications in a network-agnostic, protocol-independent manner

2b) IRP IS:: NRM (Network Resource Model)
 Network-awareness; protocol-independence

2c) IRP IS:: DD (Data Definition)
 Network-awareness; protocol-independence

3] IRP SS (Solution Set)
 Network-awareness; protocol-awareness
Functional Modelling (3)

RMP Functional Model

Knowledge & Context Management (KCM)
- Performance Management (PeM)
- Profile Management (PrM)
- Resource Management (RsM)

Decision-Making and Reconfiguration Management (DM-RM)
- Autonomic Decision-Making & Reconfiguration Management (ADM&RM)
- Policy-Management and Self-Governance (PMSG)

Self-Configuration & Self-Management (SC-M)
- Self-Configuration (SeCo)
- Cognitive Self-Healing (CoSH)
- Software Download Management (SDM)
- Pervasive Access and Security Control (PASeC)
- Reconfiguration Charging Control (RCC)

Cognitive Service Provision (CSP)
- Content and Service Adaptation (CSA)
- Reconfiguration Services Discovery (RSD)
Functional Modelling (4)

Overall Functional Model & Reference Points

Legend
- ADM&RM: Autonomic Decision-Making & Reconfiguration Management
- CoSH: Cognitive Self-Healing
- CPC-C: Cognitive Pilot Channel Controller
- CSA: Content and Service Adaptation
- DNPM: Dynamic Network Planning and Management
- JRRM: Joint Radio Resource Manager
- MM: Mobility Management
- PASEC: Pervasive Access and Security Control
- PeM: Performance Management
- PMSG: Policy Management and Self-Governance
- PrM: Profile Management
- RCC: Reconfiguration Charging Control
- RSD: Reconfiguration Services Discovery
- RsM: Resource Management
- SAM: Spectrum Allocation Manager
- SDM: Software Download Management
- SeCo: Self-Configuration
- SEM: Spectrum Economic Manager
- STM: Spectrum Trading Manager
- TE: Traffic Estimator
Knowledge & Context Management module

PrM: Profile Management
- Aggregates profile information:
 - User profile
 - Business profile
 - Application & service profile
 - QoS profile of specific reconfiguration sessions
 - Profile of discovered RATs & NW profile
 - Device profile
- Evaluates all profile data and generates the **reconfigurability classmark**: a dynamic label that describes the capabilities of the entity in terms of supported reconfiguration actions
 - Profile retrieval/update
 - Component-based profile information representation

RsM: Resource Management
- Resource monitoring (including CPC monitoring)
- Resource allocation
- Global resource optimization

PeM: Performance Management
- Performance report generation
Decision Making & Reconfiguration Management

ADM&RM
- Autonomic production of definitive reconfiguration actions (to be executed and enforced by other functional entities)
- Orchestration of mobility signalling
- Reconfiguration session management
- Negotiation control loop functionality
- Peer membership functionality

PMSG
- Self-generation of policy rules
- Legacy policy decision point & caching (prioritization, filtering, caching)

Interfaces
- KCM
- SC-M
- CSP
Self-Configuration & Self-Management

SDM
- Software-download transfer
- Reliable software-download mode switching from many-unicast to multi-cast and broadcast mode
- Local post-download procedures

SeCo
- Protocol- and cross-layer reconfiguration
- Protocol-mode switching
- Self-optimization of resources

CoSH
- BS auto-configuration
- Notification of mis-configurations
- Self-recovery

PASeC
Access control, authentication, and authorisation:
- Mutual authentication of autonomous entity and its peer (e.g., the reconfigurable terminal and the network attachment server)
- Authorisation to attach or connect to peers
- Verification of authorisation to download
- Determination of security control mechanisms (e.g., agreement on security keys) prior to the transfer of downloadable software

RCC
- Generation of charging records due to reconfiguration events (SW DL; DSA, etc.)
Conclusions

Overall Approach

✓ Modelling approach *in line with OMG MDA PIM practice*

✓ System Architecture:
 ✓ Captures *SDR/CR/autonomics* aspects (but *not the kitchen sink syndrome…*)
 ✓ *Separates control vs. management* plane functions
 ✓ Introduces *reference points / interfaces*

Ongoing & future work

✓ Network Architecture
 ✓ Separation between *functional modelling* (system architecture) and *physical configurations* (network architecture)
 ✓ NW architecture introduces domain/topology issues

✓ Generation of a set of PSMs (PIM to PSM transformation)
Thank You!

Mr. Zachos Boufidis

University of Athens, Greece

boufidis@di.uoa.gr

ACKNOWLEDGMENT

This work was performed in project E2R II which has received research funding from the European Community's Sixth Framework programme. This presentation reflects only the authors' views and the Community is not liable for any use that may be made of the information contained therein. The contributions of colleagues from E2R II consortium are hereby acknowledged.