MDA & Semantic Web Services
Integrating SWSF & OWL with ODM

Elisa Kendall
Sandpiper Software

March 30, 2006
Level Setting

An ontology specifies a rich description of the
∞ Terminology, concepts, nomenclature
∞ Properties explicitly defining concepts
∞ Relations among concepts (hierarchical and lattice)
∞ Rules distinguishing concepts, refining definitions and relations (constraints, restrictions, regular expressions)

relevant to a particular domain or area of interest.

Based On Aaai '99 Ontologies Panel - Mcguinness, Welty, Ushold, Gruninger, Lehmann
MDA & Knowledge Representation

- MOF technology streamlines the *mechanics* of managing models as XML documents, Java objects, CORBA objects

- Knowledge Representation supports *reasoning* about resources
 - Supports semantic alignment among differing vocabularies and nomenclatures
 - Enables consistency checking and model validation, business rule analysis
 - Allows us to ask questions over multiple resources that we could not answer previously
 - Enables policy-driven applications to leverage existing knowledge and policies to solve business problems
 - Detect inconsistent financial transactions
 - Support business policy enforcement
 - Facilitate next generation network management and security applications while integrating with existing RDBMS and OLAP data stores

- MOF provides no help with reasoning
- KR is not focused on the mechanics of managing models or metadata
- Complementary technologies - despite some overlap
MOF and KR Together

- MOF technology streamlines the **mechanics** of managing models as XML documents, Java objects, CORBA objects
- Knowledge Representation supports **reasoning** about resources
 - Supports semantic alignment among differing vocabularies and nomenclatures
 - Enables consistency checking and model validation, business rule analysis
 - Allows us to ask questions over multiple resources that we could not answer previously
 - Enables policy-driven applications to leverage existing knowledge and policies to solve business problems
 - Detect inconsistent financial transactions
 - Support business policy enforcement
 - Facilitate next generation network management and security applications while integrating with existing RDBMS and OLAP data stores
- MOF provides no help with reasoning
- KR is not focused on the mechanics of managing models or metadata
- Complementary technologies - despite some overlap
Coverage Goals

Classification techniques are as diverse as conceptual models; and generally include understanding:

- Methodology
- Target Usage
- Level of Expressivity
- Level of Complexity
- Reliability / Level of Authoritativeness
- Relevance
- Amount of Automation
- Metrics Captured and/or Available
Ontology Definition Metamodel

- Five EMOF platform independent metamodels (PIMs), four normative
- Mappings (MOF QVT)
- UML2 Profiles
 - RDFS & OWL
 - TM
- Collateral
 - XMI
 - Java APIs
 - Proof-of-concepts
- Conformance
 - RDFS & OWL
 - Multiple Options
 - TM, CL Optional
 - Informative Mappings
ODM Status

Several revision cycles on the specification

Informative discussions of Usage Scenarios, differences between UML & OWL

Platform Independent (Normative) Metamodels (PIMs) include
- RDF & OWL - abstract syntax, constraints for OWL DL & OWL Full, several compliance options
- ISO Common Logic (CL)
- ISO Topic Maps (TM)

Informative Models
- DL Core - high-level, relatively unconstrained Description Logics based metamodel (non-normative, informational)
- Identifier (keys) model extension to UML for ER

Latest revised submission will be posted 4/3 to the OMG web site (http://www.omg.org/docs/ad/06-01-01.pdf)

Update includes minor metamodel changes, new QVT mappings, revised RDF & OWL profile for St. Louis OMG Meeting (4/23/06)
Relationship to Other OMG Standards

- BMI Semantics for Business Vocabularies & Rules (SBVR)
- Formal Grounding (CL)
- Ontology Definition Metamodel
- Mapping via W3C RIF
- BMI Production Rule Representation (PRR)
- Vocabulary in ODM Rules in PRR

ODM extensions planned:
- Mapping from CL to RDF/S & OWL
- Support for Semantic Web Services Language, with bindings to WSDL & SOAP
- Mappings for W3C Rule Interchange Format (RIF) (i.e. vocab/ontology → rules)
- Mappings for Emerging OMG Information Management Metamodel (CWM2)
- New requirements from SOA ABSIG anticipated
Relationship to ISO Standards

- CL Metamodel is included in ISO FCD 24707
- High degree of synergy between ODM and Topic Maps ISO FCD 13250-2 working group
- All ODM metamodels are referenced and used in ISO CD 19763 (MMF - Metamodell Framework, Model Registry specification)
- All ODM metamodels inform latest modifications proposed in ISO draft 11179 Metadata Registration specification
- ODM team is working with DoD XMDR team to promote interoperability among ODM, 19763, 11179 efforts
- Current work in OMG (IMM) to develop a metamodel for ISO Express will include mappings to ODM
Why Semantics for Web Services

- Ontologies provide a common vocabulary and definition of rules for use by independently developed services

- Companies and organizations sharing common services can declaratively specify the *behaviors, policies* and *agreements* relevant to their usage

- Automation of service use by software agents
 - Goal/vision: dynamic discovery & use of new services, previously unknown, to complete task
 - Reasoning about services: support on-the-fly composition
 - Integrated use with other information resources: ultimate, fully-automated customized, user experience

- Composition, mapping and vocabulary brokering for independently developed resources and services – enables information sharing & process enactment consistently, accurately, and dynamically

- OWL-S complements WSDL by providing an abstract or application level description lacking in WSDL
OWL-S: Enabling Infrastructure for Web Services

- Based on research from the DARPA/DAML program in DAML-S (2000/2001 - SRI, Stanford, CMU)
- OWL-S – an ontology that sits at the application level, above WSDL, and describes what is being exchanged and why, not just the how
- OWL-S enables
 - discovery – of services that meet particular requirements and adhere to specified constraints
 - invocation – and execution by agents or other services
 - interoperation – through specification of the appropriate vocabularies (semantics) and message parameter translation as required based on service specifications
 - composition – automated service composition and interoperation to provide new services
 - verification – of service properties
 - execution monitoring – tracking of execution of complex services and transactions
Top-Level of the Service Ontology

Three essential types of knowledge about services

∞ The **what**, its capabilities and parameters, through a *ServiceProfile*, which can answer questions such as what does the service require of agents and provide for them

∞ The **how**, through a *ServiceModel* that describes the workflow and possible execution paths

∞ Accessibility and usage through a *ServiceGrounding*
OWL-S Structure

- Service profiles are used to request or advertise services with discovery services and capabilities registries, including:
 - Descriptions of services and providers
 - Functional behavior & attributes
Semantic Web Services Framework (SWSF)

- Emerged from work in services composition
 - May require more expressivity than is available in OWL
 - Based on logic programming, first-order logic, policy research

- Considered smorgasbord of standards
 - Web Services Description Language (WSDL) – for input & output messaging, invocation (W3C)
 - Business Process Execution Language for Web Services (BPEL4WS) – workflows of basic services (OASIS)
 - Choreography Description Language (WS-Choreography) – more global view of information exchange from a transaction perspective (W3C)
 - UDDI – standard approach for service registration, discovery, & advertising

- Builds on DAML-S, OWL-S, WSMO

- Provides rich semantics for greater automation of discovery, selection & invocation, content transformation, composition, monitoring & recovery, verification
Semantic Web Services Framework

SWSL & SWSO

- **Semantic Web Services Language (SWSL)**
 - SWSL-FOL - first order language for ontology representation, builds on CL
 - SWSL-Rules - logic programming to enable ontology use in reasoning and execution environments

- **Semantic Web Services Ontology (SWSO)**
 - Conceptual model, complete axiomatization expressed in SWSL-FOL
 - Called FLOWS - First-Order Logic Ontology for Web Services
 - Includes model theoretic semantics
 - Ontology translated to SWSL-Rules is slightly more constrained,
 - Called ROWS - Rules Ontology for Web Services

- **W3C Note & member submission**
 - http://www.w3.org/Submission/SWSF/
Management Application Integration (MAI)

Synchronization of model repositories using RDF/S & OWL based representation & transformations provides new integration capabilities for HP OpenView

Ontology was developed using an ODM-based development environment; Jena Rules support model transformations
Current Status

- Several candidate standards recently submitted to W3C (OWL-S, SWSF, WSMO, WSDL-S)
- Workshop on creating a Semantic Web Services working group held Spring 2005
- Draft charter for working group currently under development
- Process is likely to move forward in early 2006, 2 year preliminary timeline to complete standards work
Summary

- Semantic Web Services standards are converging
- OMG RFP forthcoming for extensions to ODM to support W3C Semantic Web Services, ISO EXPRESS, eventually W3C RIF
 - OWL-S, building on the RDF & OWL metamodels
 - SWSF, building on the CL metamodel, with mappings to OWL-S
 - Mappings to standardize bindings to WSDL, SOAP
- OMG BMI DTF Semantics for Business Vocabularies & Rules (SBVR) is logically grounded in Common Logic / ODM CL Metamodel
- Planned mapping to forthcoming Production Rule Representation (PRR) specification
- Planned mappings to structured, semi-structured resources via IMM
- Leverage mapping from UML for BPEL to ODM extensions (e.g., to the PSL component of SWSF)