Intrusion Tolerant CORBA: Beyond Fault Tolerance

DOCsec 2001
Annapolis, MD
March 29, 2001

Brent Whitmore
bwhitmor@nai.com

Copyright 2001 Network Associates, Inc.
All rights reserved.
Agenda

- Stepping Beyond Fault Tolerance
- Objectives & Approach
- Tolerating Intrusion
- Intrusion Tolerant CORBA Architecture
- So Far, So Good
- Q & A
Stepping Beyond Fault Tolerance
Fault Tolerant Systems

- Rely upon system’s ability to detect or mask faults
- Can be circumvented by crafty malware
- Examples:
 - Object spoofing
 - Two-faced behavior
Intrusion Tolerant Systems
- Step beyond fault tolerance.

- **Step 1:** (Fault Tolerant) Continue to run correctly in the face of *benign* faults.

- **Step 2:** (Intrusion Tolerant) Continue to run correctly in the face of *malicious or arbitrary* faults.

- Arbitrary, potentially malicious executable code termed “*Byzantine*”
Motivation - Why Step Beyond?

- Developing critical applications using CORBA on COTS platforms

- CORBA security
 - Protects at middleware level
 - Applications still vulnerable to O/S and network attacks

- Fault tolerant CORBA does not protect against malicious faults
Objectives & Approach
Technical Objectives - Middleware

- Transparently provide intrusion tolerance for CORBA applications

- Eliminate reliance on any single server
 - Secure, reliable group communication directly between clients and replicated servers

- Tolerate Byzantine (arbitrary) faults in servers

- Support heterogeneity (diversity of implementation)
Technical Objectives - Firewalls

- Protocol inspection (of secure reliable multicast)
- Avoid termination of secure connections at firewall
 - Permit end-to-end authentication between clients and servers

- [This work planned for a subsequent phase]
Technical Approach

- Leverage prior work on fault tolerant CORBA; secure, reliable, authenticated multicast; total ordering; Byzantine fault tolerance
- Active replication of clients and servers with voting
- Protect client and server hosts with application proxy firewall; include firewall in secure multicast group
- Integrate with open-source ORB
 - Detect value faults in middleware
 - Replace transport layer with secure, reliable, authenticated multicast
Approach — What’s Different?

● All servers are equal
 – Eliminate need for “primary” or “lead” server

● Detect value faults using the ORB
 – Others intercept the transport layer below ORB
 – Encoding of CORBA messages depends on the source platform (i.e., byte ordering)
 – Permit heterogeneous implementations
 ● Different O/S, hardware, ORBs
 – Permit parametric comparisons
 ● Exact matches not required for inexact values (e.g., floating point)
Approach -- What’s Different?

- Transparent object replication
- Application proxy firewall integrated into the architecture
 - Better protection for COTS client and server hosts
 - End-to-end authentication of client and server
 - May have better performance than IIOP/SSL proxies
Tolerating Intrusion
Tolerating Byzantine Behavior

Problem first described in *Byzantine Generals* paper (Lamport, Shostak, Pease - July 1982)

Problem:
- Commanding general verbally sends orders to \((n - 1)\) lieutenant generals
- All loyal lieutenants obey the same set of orders
- Every loyal lieutenant obeys the orders of a loyal commander
- Loyal generals attempt to reach correct agreement in spite of the traitorous actions of others

Conclusions:
- No solution works unless at least \(2/3 + 1\) of generals are loyal
- Voting among generals on each order solves problem after quorum condition \((2/3 + 1)\) met
Tolerating Byzantine Behavior in Distributed Object Systems

- Replicate deterministic objects
- Run replicas in parallel
 - Same inputs
 - Maintain same internal state in all replicas
- Vote on replica outputs before use
 - Output consumer waits for a quorum \((2f + 1)\)
 - Consumer tallies votes
 - Accepts “majority” output of the group of replicas
 - Discard subsequent messages for this request-reply
- “Active replication with voting”
Voting - “A” calls “B”

1 - Send request
2 - Receive request
3 - Send reply
4 - Receive reply

“B” replicas

“A” replicas

Value Votes
Intrusion Tolerant CORBA Architecture
Simplifying Assumptions

- Addition of replacement servers not addressed (first iteration)
- Network does not partition
- Secure configuration mechanism
Conceptual Overview

Client Application Code

IT ORB

Voter

Marshalling

Secure, Reliable Multicast

IP Multicast

Client-Side Firewall

IT-DOS Proxy (Secure, Reliable Multicast)

Server-Side Firewalls

Firewall IT-DOS Proxy

Firewall IT-DOS Proxy

Firewall IT-DOS Proxy

Redundant Servers

Server Application Code

IT ORB

Group Mgr

Group Mgr

Group Mgr

Group Mgr
Architecture Detailed

Replication Domain Element

Application

Object A
Object B
Object C

Group Manager

SMIOP Transport

IT ORB

Replicated Objects

Replicated Service
Replication Domains and Their Elements

- Replication domains
 - Contain replication domain elements

- Replicated domain element (RDE)
 - Contains application objects
 - Fundamental unit of replication
 - Each RDE in a domain replicates the same set of application objects
 - Authenticates messages sent to others
Example Replication Domain

Replication Domain “A”

Replication Domain Element
Application
Object A
Object B
Object C

IT ORB
SMIOP Transport

“C” Object Replicas

Replication Domain Element
Application
Object A
Object B
Object C

IT ORB
SMIOP Transport

Replication Domain Element
Application
Object A
Object B
Object C

IT ORB
SMIOP Transport

Replication Domain Element
Application
Object A
Object B
Object C

IT ORB
SMIOP Transport
Communication Groups

- Analogous to unicast connections
- Two multicast addresses - one each way
- Secrecy key
- Typically pooled & reused for later invocations
Group Manager Service
Group Manager

- Replicated service
 - Not an object
 - Uses SRMP directly, no ORB marshalling
 - Not present in every RDE
- Establishes own replication domain
- Located at a well-known multicast address
Group Manager Functions

- Manages groups by:
 - Assigning multicast addresses to replication domains
 - Generating, assigning & distributing communication group secrecy keys
 - Tracking and managing membership
 - Re-keying for changes in group membership

- Administers policy
 - Secrecy
 - Replication
 - Communication/access control
Secure Multicast InterORB Protocol

![Diagram of Replication Domain Element with Application, Object A, Object B, Object C, Group Manager, IT ORB, and SMIOP Transport]
ORB Interface

Connection Manager

Voter

Marshal

Secure Reliable Multicast

IP Multicast
ORB Interface

- Provides connection-oriented communication to ORB
- Calls marshalling layer directly for outbound messages
- Receives unmarshalled, consolidated inbound messages from voter
- Interfaces supporting installation of SMIOP as an extensible transport
 - Extensible transport extended with callbacks to ORB’s marshalling functions from transport
Connection Manager

ORB Interface

Connection Manager

Voter

Marshal

Secure Reliable Multicast

IP Multicast
Connection Manager

- Endpoint for SMIOP connection management messages
- Handles details of open/close/control connection
- Unifies error & timeout indication
Voter

ORB Interface

Connection Manager

Voter

Marshal

Secure Reliable Multicast

IP Multicast
Voters

- Coalesce duplicate messages
 - Duplicate invocations from replicated client group
 - Duplicate replies from server group

- Value voting
 - Generate agreement on the value of request or reply
 - Identifies objects that disagree as Byzantine

- Handles Byzantine objects
 - Remove offending object and all other objects on the same host from all groups

- Uses Virtual Voting Machine technology
 - Washington State University/Verizon-BBN work
Voting Machine

- Abstracts out the voting algorithm
- Determine result from possibly inexact matches
- Permits alternatives to majority voting & strict equivalence

Examples:
- Mean, median, mode
- Majority rule
- Floating point comparison
Secure Reliable Multicast Protocol
Secure Reliable Multicast Protocol

- Uses IP multicast
- Reliable, authenticated transport
- Confidential delivery
- Based on Castro-Liskov’s protocol
SRMP Properties

- Reliable delivery by processes
 - Integrity - delivered only once & only if sent
 - Agreement - all delivered or none
 - Validity - delivered if sent

- Totally ordered

- Secure
 - Source authenticity
 - Message integrity
 - Confidentiality
So Far, So Good
Expected Achievements

- At least one implementation of an ORB on two or more heterogeneous platforms that tolerates Byzantine faults
- Integrated application proxy firewall support to protect COTS client and server hosts
- Understand trade-off between performance and degrees of intrusion tolerance
- Identify assumptions and residual risks
Progress to Date

- Developing intrusion tolerant CORBA architecture:
 - Documented low-level use cases
 - Reviewed prior work
 - Draft architecture paper near completion
- Selected TAO as the prototype implementation ORB
- Received source code for Castro-Liskov group communication system
Progress to Date

● Development platforms in place
 – PC/Linux/VMWare
 – Sun/Solaris
● Coding imminent
● Firewall support in next phase
Q & A

Questions?

Thanks!

Contact information:
– bwhitmor@nai.com
– http://www.pgp.com/research/nailabs