

Secure, Real-Time CORBA Requirements for Military Avionics

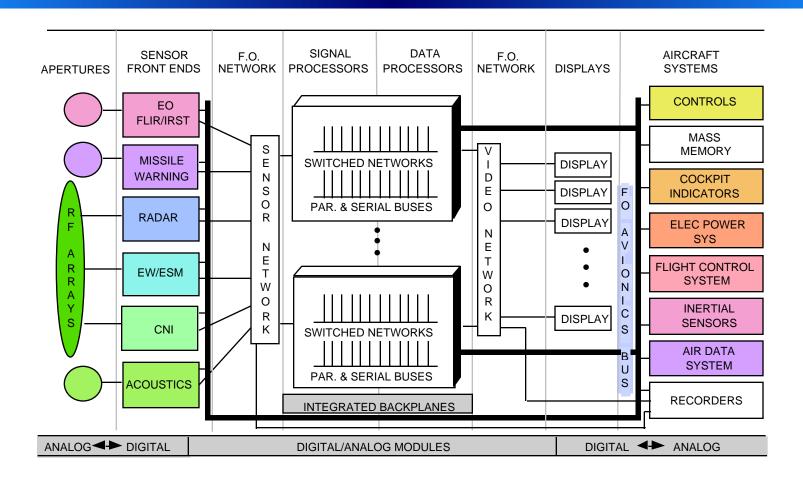
Presented to OMG/NSA Workshop April 1997

Roberta Gotfried
(310) 334-7655
rgotfried@msmail4.hac.com

Dennis Finn
(310) 334-1043
dfinn@msmail4.hac.com

Outline

- Characteristics of Military Avionics Processing Environments
- Software Architecture Issues in Military Avionics Systems
- Real-Time Requirements
 - RT CORBA Functional Requirements
 - Real-Time Features of Avionics Operating Systems, POSIX and Ada95
 - Which Real-Time Requirements Implemented in the Application, OMG's OMA, OS, Hardware?
- Evolution of Avionics Processing Architectures
- Security Requirements
 - Information Security is a Recognized Requirement in Airborne Systems
 - Security Features of F-22 & Future Military Avionics Systems
 - Which Security Requirements Implemented in the Application, OMG's OMA, OS, Hardware?
- Technical Risk Reduction Plan for CORBA in Military Avionics

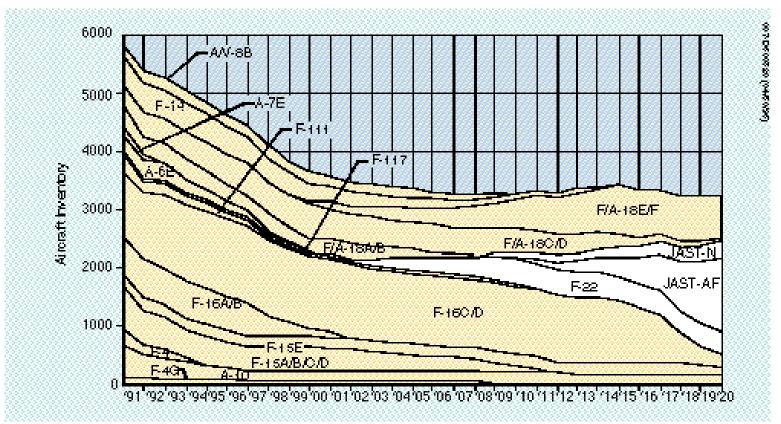

Characteristics of Military Avionics Processing Environments

- Real-Time: Periodic & Aperiodic Events; Hard Real-Time; Resource Management - QoS
- Processing: Serial & Parallel; Signal & Data
- Parallel Processing: Cache Coherent Shared Mem versus Message Passing Distributed Mem (e.g., Mercury)
- I/O: Multiple Buses; Not Typically TCP/IP; Streaming Data
- Adaptive Behavior: Increase or Decrease Processing Load in Response to Dynamic Environment (e.g., sensor resolution, EW, Fire Control, Radar Modes, ...)
- Security: Military & Intelligence Threats; Multi-Level; International
- Mission Critical: Lives Depend on Correct Operation (BIT, Fault Management, System Integrity)
- Embedded: Remote Operations; Field Replaceable Modules; Size, Weight and Power: 2X Increase => 10X \$ Increase

Example Avionics Processing Architecture

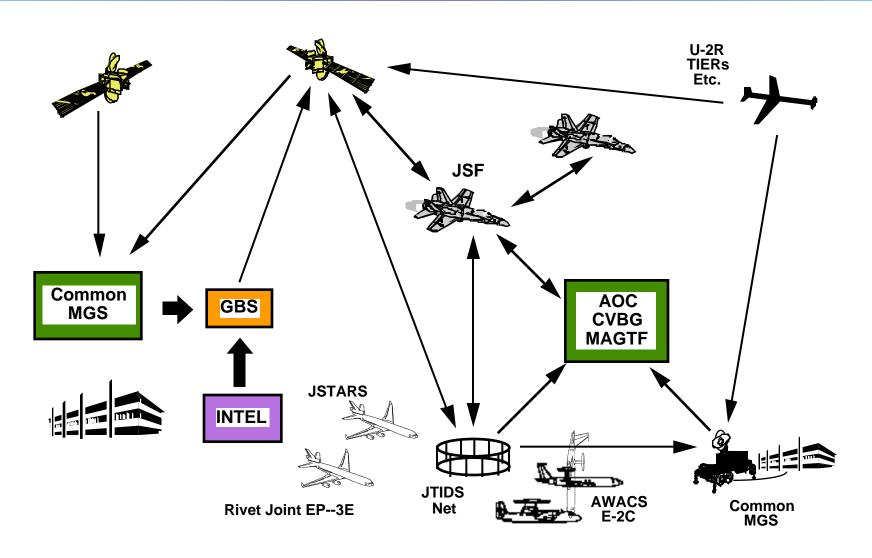
This architecture is taken from the Joint Advanced Strike Technology Program Avionics Architecture Definition, Version 1.0 dated 9 August 1994

Software Architecture: Issues in Military Avionics Systems


- Evolution (Evolvability)
- Increased Situational Awareness
 - Increased Survivability and Lethality
- Aircraft LifeCycle Cost
 - Development
 - Maintenance
 - Upgrades (technology, function, cost reduction)
- Scalability at Runtime

CORBA represents part of a solution to address many of these challenges.

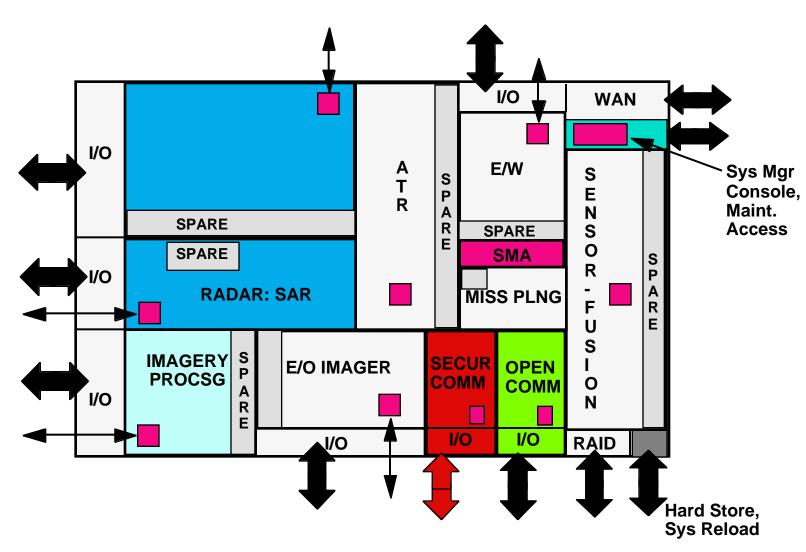
System Evolvability 20 - 30 Year LifeCycle



- Why Upgrade: Parts Obsolescence; Changes in Functionality & Performance
- Cost-Effective Upgrades
 - Reengineer Legacy S/W, OO, Reuse, COTS
 - Revalidation strategies for cost, reliability, correctness (flight test)

Increased Situational Awareness (Survivability & Lethality)

Decreasing Aircraft Life Cycle Costs



- API Standards Increase Portability
- OO Software Architectures Increase System Modularity
- CORBA Increases Portability of Objects & Interoperability Between Objects
- Increased Potential for Reuse and for Use of COTS Components Lowers Development and Incremental Upgrade Costs
- Software: Jovial, Ada83, other --> Jovial, Ada95, COTS, Legacy Reuse, other
- Increased Use of COTS Standards: Portability, Interoperability, Scalability
- Increased Use of COTS Hardware & Software Components
- Fewer Hardware Module Types

Run-Time Scalability

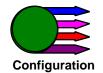
Real-Time CORBA Required In Military Avionics

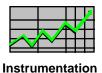
- All Real-Time SIG (ORBOS) Activities Necessary in Military Avionics
 - Fault Tolerance WG
 - Flexible Bindings WG
 - Embedded ORB WG
 - Multiple Protocols WG (low latency transport, RT IOP, UDP GIOP, ...)
 - Time Services WG
 - End-to-end Timelinenss Predictability WG
 - Scheduling WG
 - Run Time Performance Metrics WG (Metrics SIG initial RFI real-time market)
- Real-Time Parallel Processing for CORBA Needed in Military Avionics
 - Parallel ORB Supporting SPMD Applications on MIMD Parallel Processor
 - No OMG SIG/WG on Parallel Processing Platform
 - Tandem Has Parallel ORB for Fault Tolerance on Proprietary Non-Stop Processor
 - MPI DeFacto Standard in HPCC Community RT MPI as RT SIG RFI Response
 - DARPA HPC++

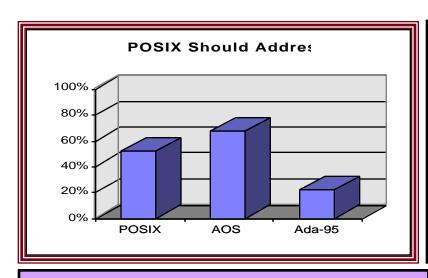
Real-Time OS + CORBA + Security in Military Avionics

- JSF, DISA (AJPO), and USAF Wright Lab funded Hughes to evaluate and determine the suitability of the POSIX and AOS APIs, and Ada 95 features for real-time embedded software
 - Areas of Interest: availability, performance, security, and supportability tradeoffs
 - Delta Document Comparing RT POSIX (IEEE 1003.5b/D5), AOS, Ada 95
 - 165 page Delta Doc on OMG Server: orbos/97-03-02, orbos/97-03-03
- Examining CORBA + Security Implications for AOS/POSIX/Ada95 in Military Avionics

SAE Requirements







Real-Time POSIX Should Address

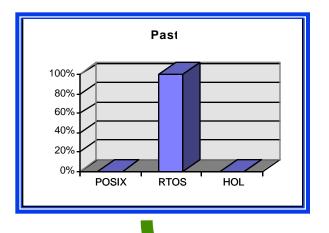
Requirements:

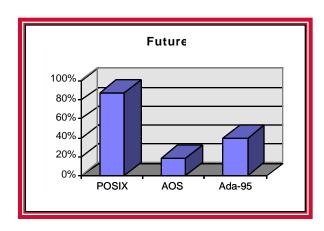
- Program Support
- Data Security
- •Memory Management
- •Input Output
- Data Conversion
- •Fault Management
- Non-Operational Support

Number of Requirements:

•108 Total Requirements

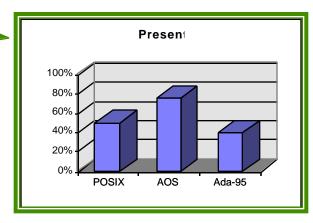
Findings:


- •Significant POSIX Deficiencies were Found in:
- Program Support
- Data Security
- Memory Management
- Input Output
- Data Conversion
- •Fault Management
- •Non-Operational Support


Recommendation:

- •Present The Missing Requirements to The Real-Time Working Group.
- •Get a Consensus on The Needed Requirements.
- •Implement The Agreed-on Requirements.
- •Migrate Any Requirements That have not Been Agreed-on to Category 4.
- •Recommend The Implementation of Ada Bindings of Any Relevant Requirements.

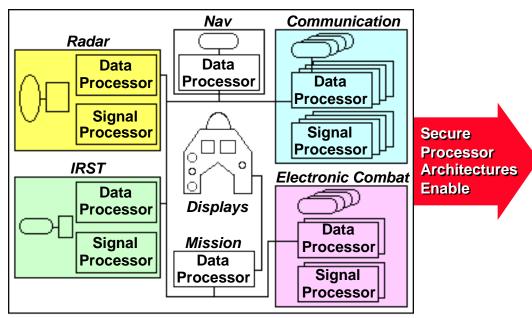
The Trend in APIs



Ada + POSIX

 Real-Time Functionality Lacking in OS, POSIX, and Ada
 Considerable Overlap in OS, POSIX, and Ada

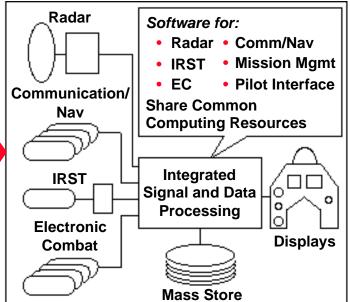
Ada + POSIX


- •High Order Functionality in Ada
- •General OS Functionality in POSIX
- •Hardware Specific Functionality in RTOS

Evolution of Avionics Processing Architectures

Federated System Properties:

- Single Application Within Each Physical Boundary
- Single Applications Developer Per Unit
- Debugging Scope Is Limited to Application

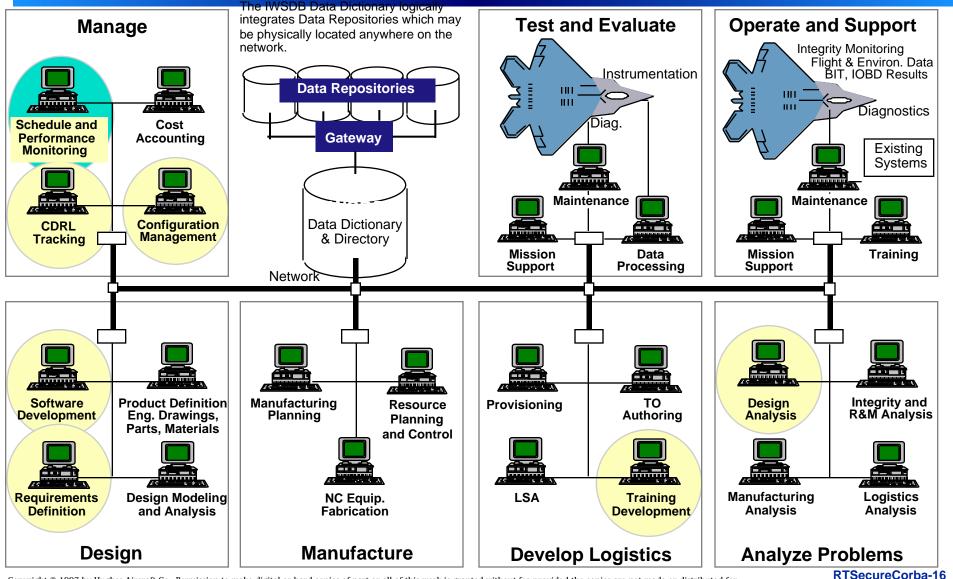


Data Security Importance:

- Protect Classified Information From Leaking Data Security Approach:
- 1. Each Unit At Application High
- 2. "Natural" Red/Black Separations

Integrated Avionics Properties:

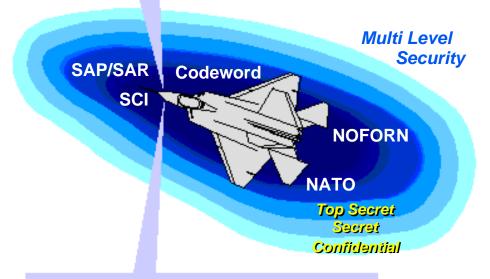
- Multiple Applications Sharing Many **Common Resources**
- Multiple Applications Developers
- Multiple Applications Debugging



Data Security Importance:

- Protect Classified Information
- Prevent Illicit Interactions Between Applications Data Security Approach:
- 1. "Built-in" Robust Hardware and Software **Separation Mechanisms: Trusted Computing** Base (TCB)

Air Vehicle Interfaces Extend Beyond the **Operational Environment**


Information Security is a Recognized **Requirement in Airborne Systems**

Off-Board Information

- National Assets
 - COMINT
 - ELINT
 - IMINT

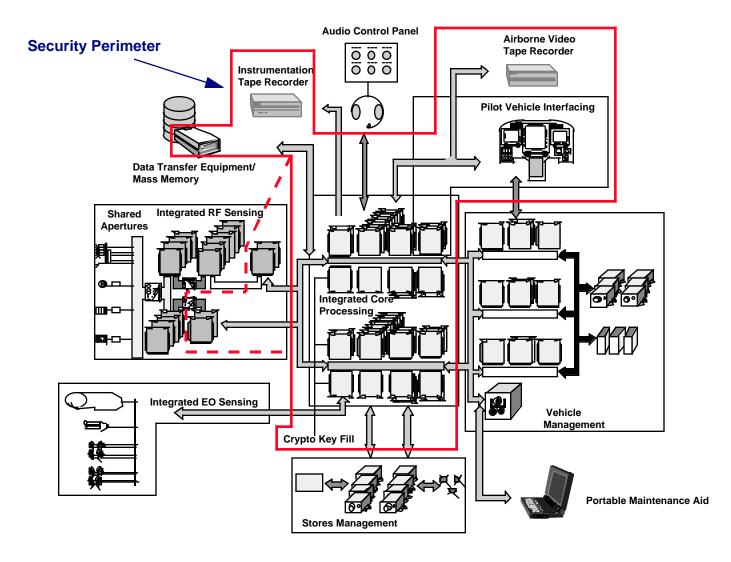
- Threat Assets
 - HUMINT
 - Surveillance Information

On-Board Information

- Mission Plan
- Threat/Target Information
- Aircraft Capabilities and Technology
- Databases
- Electronic Kevs

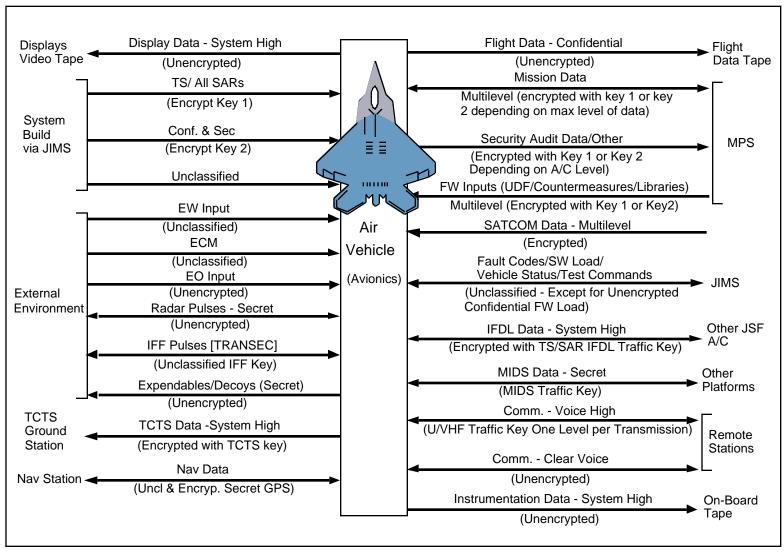
Example Security Threats in Airborne Systems

- **Insider Threat (developers, maintainers)**
- **Disclosure**
- **Eavesdropping**
- **Penetration**
- **Traffic Analysis**
- Masquerading (Spoofing, Malicious Logic)
- **Emissions Attack**
- **Reverse Engineering (Tech/Alg)**
- **Penetration (Maintenance)**
- **Falsification**
- **Obstruction (Overload)**


Applications

- F-22
- Joint Strike Fighter
- - RECCE
 - JSTARS
 - E2C
 - F15
 - Comanche

- Data Fusion
- Sensor Fusion
- Upgrades to Existing
 Situation Awareness
 - RealTime Intell
 - Integrated Avionics
 - Off-Board Sensors
 - SATCOM


JSF Secure Avionics Architecture Concept

Air Vehicle Interfaces with Security Characteristics

Technical Risk Reduction Plan for CORBA in Military Avionics

- Real-Time, Secure CORBA
 - Performance Assessment of COTS ORBs (execution time & memory usage)
 - Real-Time, Trusted ORB Supporting MLS Using Standard RTOS API (e.g., AOS)
- Increased Experience Using CORBA With Ada95 on Real-Time, Embedded COTS Processor (e.g., OIS/Iona Orbix/Ada on PPC)
- Profiles of COTS ORBs Use Only The Necessary Fuctionality
- Extensible ORBs (e.g., I/O)
- Parallel, Real-Time, Secure CORBA Applications
 - DeFacto Parallel Processing API Standards (i.e., MPI, Embedded MPI, Real-Time MPI) for Scalability
 - Real-Time, Secure OS Experience in COTS Parallel Processors (e.g., DARPA PROSE for Intel TeraFlops)
 - Secure, RT CORBA for SPMD Applications on COTS Embedded Parallel Processors (e.g., Mercury, CSPI, Sky)
- Demonstrate Scalable, Real-Time, Secure Military Application Software Using CORBA on Embedded Processors

Summary

- CORBA Provides Same Benefits to Commercial and Military Systems
 - Standard APIs Increase Application Portability
 - Heterogeneous Languages, COTS Components, Reuse
 - Interoperability Between Distributed Objects
- Military Avionics Systems Require Solutions That Address Combinations of
 - Security + Real-Time + Embedded + Fault Tolerance + Scalability
- CORBA Needs to Provide
 - Flexibility in Security Policy and Models
 - Well-Defined and Acceptable Levels of Assurance in ORBs
 - Security Architecture That Clearly Defines OS/ORB Roles