

The Real-Time CORBA tutorial

Presenter:

Shahzad Aslam-Mir Ph.D.

Senior Software Architect – CORBA Technologies

VERTEL Corporation (USA)

sam@vertel.com

Contributors

Shahzad Aslam-Mir Ph.D.

- VERTEL Corporation (USA)

Bill Beckwith

- Objective Interface Systems

Jon Currey

- Highlander Engineering

Tom Cox

- Tripacific Software

E. Douglas Jensen Ph.D.

- MITRE

With support from Professor Douglas Schmidt Ph.D.

- UCI & DARPA-ITO

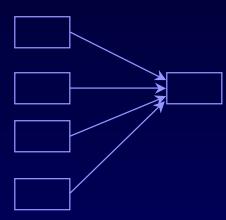
The Real-Time CORBA tutorial Part-1

Contributors:

Bill Beckwith
Objective Interface Systems
bill.beckwith@ois.com

Shahzad Aslam-Mir Ph.D. VERTEL Corporation (USA) sam@vertel.com

Introduction to Real-Time Principles


What is Real-Time All About?

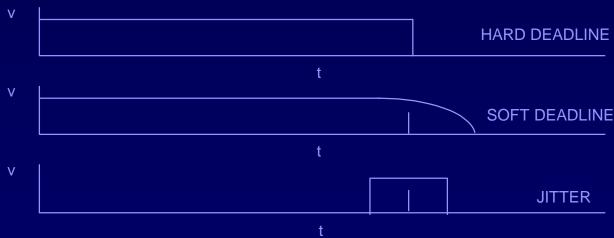
Real-Time is **Not** About

- Speed
- Efficiency

Real-Time is About Time Constraints

- Objects contend for system resources (e.g., CPU, LAN,I/O)
- Rules for contention resolution follow different strategies
 - These strategies are NOT equivalent in terms of resource utilization or engineering viability
 - There is a wide range of approaches (e.g., frames, round-robin, priority)

Introduction to Real-Time


Definition of a Real-Time System

A real-time system is one in which correctness depends on meeting time constraints.

Correctness arguments must reason about response time requirements as well as functional requirements

A real-time system produces a value to the user which is a function of time

Sample real-time program values

Hard Real-Time, Soft Real-Time

Hard Real-Time

- Resources must be managed to guarantee all hard real-time constraints are met, all the time
- No unbounded priority inversions are permitted
- Missing a time constraint is considered a failure to meet requirements

Soft Real-Time

- At least three kinds, possibly in combination:
 - Time constraints may be missed by only small amounts (usually expressed as a percentage of the time constraint)
 - Time constraints may be missed infrequently (usually expressed as a percentage of instances)
 - Occasional events or periodic instances may be skipped (usually expressed as a probability)
- Resources must be managed to meet the stated requirements
 - Same mechanisms as for hard real-time, but guarantees harder to define
 - Soft real-time is not the same as non-real-time, or meeting an average response time.

Hard Real-Time is hard, but Soft Real-Time is harder!

Timing Requirement Sources

Time Constraint Requirements Have Only Two Sources:

- Explicit Top Level Requirements, e.g.,
 - Display a video frame within 33 milliseconds.
 - This is not the most common source of Timing Requirements.
- Derived Requirements, e.g.,
 - Accuracy "Maintain aircraft position to within 1 meter => Periodicity"
 - Fault Tolerance "Recover from message loss within 500 ms."
 - Human Computer Interface Requirements
 - Process switch depressions within 250 ms.
 - Refresh display within 68 ms.

Real-Time Scheduling

System Resource Scheduling: The Principal Difference Between a Real-Time and Non-Real-Time System.

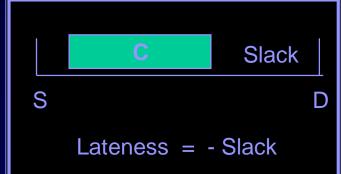
- Definition of Real-Time Scheduling:
 - Real-Time scheduling is the process of sequencing shared resource allocations to meet user's time constraints.
- The Principal Three Goals:
 - 1. Meet all application time constraints, if feasible.
 - 2. Meet all important time constraints if meeting all time constraints is not feasible.
 - 3. Be able to accurately predict how well goals 1 and 2 are met for any given process load.
- Real-Time ≡ Real-Fast

Real-Time Scheduling Algorithms

Shortest Processing Time First (SPT)

- Minimizes mean lateness
- Optimal for Goals 1 and 3, stochastically

Earliest Deadline First (EDD, or Deadline)


- Minimizes maximum lateness
- Optimal for Goals 1 and 3 (fails disastrously on overload)

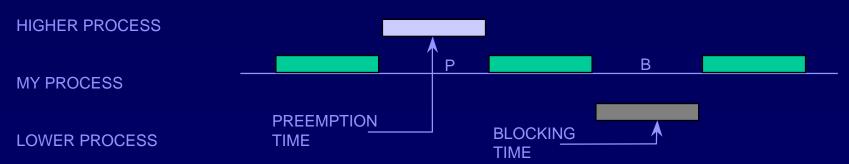
Smallest Slack Time First (Minimum Slack or Minimum Laxity)

- Maximizes minimum lateness
- Optimal for Goals 1 and 3 (fails disastrously on overload)

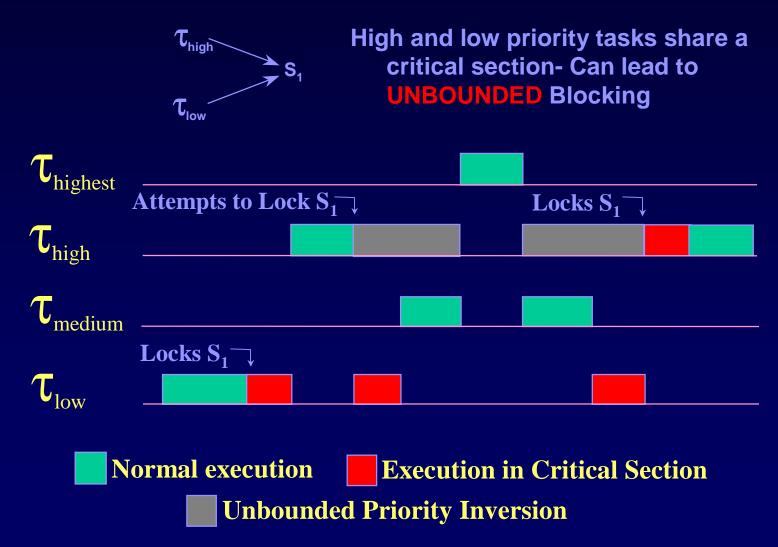
Rate Monotonic Scheduling (RMS)

- Approximates EDD with reduced utilization bound
- Non-optimal, but fulfills all real-time goals for mostly periodic processing domains
- Optimal for fixed priority scheduling

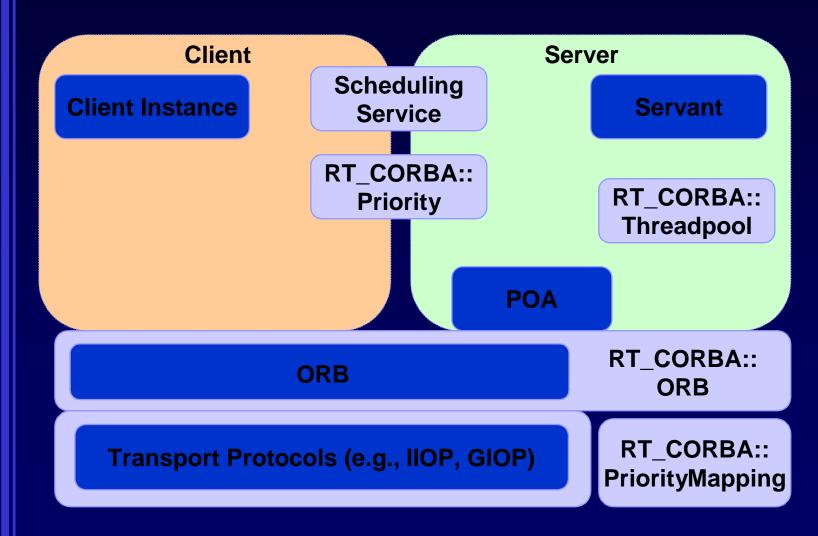
Scheduling in Real-Time CORBA 1.0


Fixed Priority (Static) Scheduling

- Provides a basis for resource allocation
- Threads have priority based on time constraints
- Underlying Theoretical Basis
 - Rate Monotonic Scheduling
 - Deadline Monotonic Scheduling
- Fixed Priority means priorities change only
 - To prevent priority inversion
 - When required by application


Shared Resource Concepts

- Preemption.
 - Execution delayed by higher priority tasks
- Blocking (Priority inversion)
 - Execution delayed by lower priority tasks
- Mutual Exclusion (Mutex)
 - Sequenced access to a shared resource, typically implemented by locking and waiting for locks.
- Critical Section
 - Execution while holding a lock.



Shared Resources and Priority Inversion

RT-CORBA Components

Concurrency & CORBA

Concurrency is fundamental to real-time systems

- CORBA extends the concurrency model
- Requires resource controls

Concepts supported by RT CORBA

- Threadpools
 - Multiple, Static or Dynamic, Default priorities
- Scheduling policies
 - Client to Server Propagation or Server Defined

Choices among concepts strongly impact performance

Transport Protocols

Communication from client to server

 A major contributor and consideration in RTCORBA systems design – a science in itself

Communication from client to server

- Represents yet another resource to be scheduled
- Source of potentially unbounded delays
- RT CORBA permits choosing among available protocols

Real-Time Principles Summary

Real-Time ≠ **Real-Fast**

Scheduling concepts are frequently counterintuitive

Resource management is the fundamental requirement to deal with response time issues, whether hard real-time or soft real-time

Next — The Real-Time CORBA 1.0 Specification details