CORBA-based Performance Management System

Bing Leng
Lucent Technologies
January 18, 2001
Outline

• Objectives
• Scope
• Design
• Implementation
• Examples
• Performance Evaluation
• Conclusion & Next Steps
Objectives

• Assess the applicability of CORBA in Telecom Network Management
 – Verify the information model
 – Verify the mapping to proprietary interface
 – End-to-end connection
 – Performance/Scalability
Performance Management Requirements

- Monitor real-time traffic (calls/packets/cells)
- Control network traffic congestion
- Provide "agreed-upon" Quality of Service
CORBA PM Information Model

• Based on T1M1 CORBA NM Framework guideline
• Inherited from X.721 and M.3100 IDL model
• Includes X.739, X.738, Q.822, and Q.823
• Key Objects:
 – Scanner, Simpler Scanner
 – Current Data, History Data, Threshold Data
 – State Indicator
 – Traffic Controls
Scope

• 30-second Discrete Data
 – status discretes - indication of problem at the office, or routine status advisories
 – configuration change discretes - indication of surveillance and control changes in the office,

• 5-minute Measurements
 – office (machine) data - various office-wide counts on total traffic at the office, total processor load
 – trunk group data - peg count, incoming and outgoing calls per circuit hour,
 – control data - total number of controls in effect on an office, attempts and successes on call gaps and reroutes

• Traffic Control
 – manual control - destination code control
Design

• System Architecture
• Function Block Diagram
• Interface Inheritance Hierarchy
• Interface Examples
• Naming Tree
• POA Structure
• POA Policies
Function Block Diagram

PM Prototype System

- CORBA Client
- CGI
- Web Server
- PM Prototype System
- CORBA Server
- X.721 - Q.823 Data Model (ITU-T)
- CORBA Naming Service
- Switch Mediation Module
- Performance Data
- java applet

Windows NT 4.0
NT Station

- Database Management
- Switch Connectivity
- System Platform

Switch Connectivity

- Switch
- X.25

OMG CORBA Compliant

- X721, M.3100, X.739, X.738, Q.822, Q823
- CORBA IDL/IIOP
- HTML/HTTP
- TCP/IP

Web Browser

Management Work Stations

- HTML
- java applet

Switch

- X.25

CORBA

Lucent Technologies
Bell Labs Innovations

2000 OMG Embedded Object-based Systems Workshop
Interface Inheritance Hierarchy

NOTES:
1. Add activateQueryReport(st_time, interval) operation
2. Add activateHistoryReport(st_time, interval) operation
3. Add accumulated counter attributes
Interface Example 1: Scanner

Inherited From: Managed Object
Attributes:
 Administrative State:[RW] activates and deactivates (administratively suspending the scanner from emitting PM summary reports) the function performed by the scanner.
 Operational State:[R] identifies whether or not the scanning function represented by this entity is capable of performing its normal functions.
 Availability State:[R] identifies whether a scanner is on duty or not.
 Granularity Period:[RW] specifies the time between scans (e.g., retrieve PM data every 24 hours).
 Start Time:[RW] defines the date and time at which this scanner starts functioning.
 Stop Time:[RW] defines the date and time at which this scanner stops functioning.
Notifications:
 Attribute Value Change:
 State Change:
Interface Example 2: CurrentData

Inherited From: Scanner

Attributes:
- **Granularity Period:**[R] inherited from Scanner, specifies the PM parameters collection period (5 minutes, 15 minutes, 1 hour, or 24 hours).
- **Suspect Interval Flag:**[R] indicates that the performance data for the current period may not be reliable, or the NE was unable to collect data (‘True’). For reliable data the value of this attribute is ‘False’.
- **Elapsed Time:**[R] represents the difference between the current time and the start of the present summary interval.
- **Threshold Data Instance:**[R] * identifies the Threshold Data entity which contains the threshold values for the performance monitoring data collected by this entity. Initially this attribute identifies a Threshold Data entity that contains default threshold values.
- **History Retention:**[RW] specifies the history data retention time for History Data entity (7 days of 5 minutes, 15 minutes, 1 hour, or 24 hours intervals,).

Notifications:
- **Quality of Service Alarm:**
Interface Example 3: SimpleScanner

Inherited From: Homogeneous Scanner

Attributes:
- **Once Report Attribute Id List:**[RW] contains a set of attribute Ids. The value of the attributes identified shall be included only once in the summary report if they have the same value across all the observed objects.
- **Numeric Attribute Identifier Array:**[RW] contains a numeric array of attribute identifiers for reporting purposes.

Actions:
- **Activate Scan Report:** initiates a scan according to the current entity and attribute selection attributes of the scanner. The reply includes all scanned attribute values.

Notifications:
- **Scan Report:** emitted upon completion of a scan, and includes the name of the observed objects and requested attribute values observed during the scan.
POA Structure

ROOT POA

Factory POA
w/ Active_Map

Scanner POA
w/ Active_Map

ESS POA
w/ Active_Map

TG POA
w/ Default_Servant

TG_Data POA
w/ Default_Servant

DCC POA
w/ Default_Servant

DCC_Data POA
w/ Default_Servant

NOTE: Use a single POA manager for all the POAs
Polices for Map-type POA

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Polity Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifespanPolicy</td>
<td>PERSISTENT</td>
<td>Server needs CORBA objects that live beyond any particular process in which they are created or activated.</td>
</tr>
<tr>
<td>IdAssignmentPolicy</td>
<td>USER_ID</td>
<td>Server needs to assign its own identifiers to its persistent objects for keeping track of them.</td>
</tr>
<tr>
<td>ImplicitActivationPolicy</td>
<td>NO_IMPLICIT_ACTIVATION</td>
<td>Server needs to explicitly activate CORBA objects for PERSISTENT policy.</td>
</tr>
<tr>
<td>RequestProcessingPolicy</td>
<td>USE_ACTIVE_OBJECT_MAP_ONLY</td>
<td>Since only a few objects under this poa, Server can use active object map.</td>
</tr>
<tr>
<td>IdUniquenessPolicy</td>
<td>UNIQUE_ID</td>
<td>Server needs unique association between object id and the corresponding servant in the active object map.</td>
</tr>
<tr>
<td>ServantRetentionPolicy</td>
<td>RETAIN</td>
<td>Again, for only a few objects under this poa, Server can keep the associations in the active object map.</td>
</tr>
<tr>
<td>ThreadPolicy</td>
<td>ORB_CTRL_MODEL</td>
<td>Server needs multiple threads to service multiple requests concurrently.</td>
</tr>
</tbody>
</table>
Policies for Default Servant-type POA

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Polity Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifespanPolicy</td>
<td>PERSISTENT</td>
<td>Server needs CORBA objects that live beyond any particular process in which they are created or activated.</td>
</tr>
<tr>
<td>IdAssignmentPolicy</td>
<td>USER_ID</td>
<td>Server needs to assign its own identifiers to its persistent objects for keeping track of them.</td>
</tr>
<tr>
<td>ImplicitActivationPolicy</td>
<td>NO_IMPLICIT_ACTIVATION</td>
<td>Server needs to explicitly activate CORBA objects for PERSISTENT policy.</td>
</tr>
<tr>
<td>RequestProcessingPolicy</td>
<td>USE_DEFAULT_SERVANT</td>
<td>Containing many thousands of objects with the same IDL interface type under this poa, Server needs to use default servant.</td>
</tr>
<tr>
<td>IdUniquenessPolicy</td>
<td>MULTIPLE_ID</td>
<td>To map multiple object identifiers to a single servant, Server needs MULTIPLE_ID policy.</td>
</tr>
<tr>
<td>ServantRetentionPolicy</td>
<td>NON_RETAIN</td>
<td>With DEFAULT_SERVANT, Server doesn't need to retain the associations.</td>
</tr>
<tr>
<td>ThreadPolicy</td>
<td>ORB_CTRL_MODEL</td>
<td>Server needs multiple threads to service multiple requests concurrently.</td>
</tr>
</tbody>
</table>
Implementation

- System - Windows NT 4.0
 - CPU: 366 MH; Memory: 128MB; Disk: 10 GB
- Toolkit - IONA’s Orbix2000
- CORBA Service - Naming Service
- DB Connection - ODBC
- Inter Process Communication - Socket
- WebServer - Apache v1.3
- Language - C++, Java
Examples

• 5 min. Exchange Data
 – the switch data is updated to a database every 5 minutes
 – the CORBA server retrieves the data every 5 minutes

• Destination Code Control
 – Factory Object creates the Control Object and
 – sends switch-specific control command to the switch
 – Terminator Object destroys the Control Object and
 – cancels the control command from the switch
Example 1: 5 min. ExchangeData

1. HTTP
2. CORBA
3. Naming Service
4. IIOP
5. ODBC
Example 1 (cont.): Data Display

- Incoming: 1045
- Transit: 60
- Outgoing: 1509
- Terminating: 996
- Originating: 1506
- Origination: 2001
- Intra-Office: 495
- Terminating: 1440

Switch Completion Rate: 96%

Example 2: DestinationCodeControl
Example 2 (cont.): Data Display

Destination Code Control Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>005</td>
<td>ALL</td>
<td>35779</td>
<td>ALL</td>
<td>12.5%</td>
<td>NCA</td>
<td>81</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>INTL</td>
<td>86</td>
<td>ALL</td>
<td>0.25sec</td>
<td>EA1</td>
<td>128</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>ALL</td>
<td>2547</td>
<td>ALL</td>
<td>25%</td>
<td>NCA</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Evaluation

• Number of Instances
• Number of Name Bindings
Number of Instances

• **Facts**
 – the number of different types of objects is small
 – the number of instances is large

• **Approach**
 – use a default-servant to represent a object type
 – use database records to represent instances

• **Performance**
 – the performance is only bound by the underlying database system
Number of Name Bindings

• Facts
 – the number of “to be published” instances is large
 – the number of Name Bindings is large

• Approach
 – T1M1 CORBA NM Framework defined a principle for mapping from TMN containment tree to CORBA Naming tree

• Performance
 – the performance is bound by the specific Naming Service implementation
Object Resolving Latency
NOTE: the slope is linear
(ave sec/obj = 0.025)
Memory Size of Naming Service

NOTE: the slope is linear
(ave byte/obj = 320)
Conclusion

- CORBA can be used in Network Management
 - CORBA NM framework
 - IDL information model
 - mapping to proprietary interface
 - end-to-end connection (integration)

- Performance is acceptable
 - with POA, large number of instances will not cause performance problem
 - with current Naming Service implementation, resolving a name is very fast, but initialization time and memory size might need to be considered when the number of name bindings become large
Next Steps

• Cooperate with Notification Service
• Expend it to cover packet side (ATM switch)
• Submit a joint contribution on Performance Management to standards body (T1M1, ITU-T)