

Beyond Network Management

Using Real-time CORBA in Optical Switching Infrastructures

Chuck Abbott

Objective Interface Systems, Inc.

chuck.abbott@ois.com

http://www.ois.com

Introduction

- Trends in Communications
- CORBA and Network Management
- Challenges in Building Optical Switches
- Using Real-time CORBA in Optical Switches
- Summary

Trends in Communications

Trends in Communications

High-speed Optical Switches

- Bigger, faster, and dumber
- IP-based Services
- New Applications
 - Live, high-definition video
 - Virtual Private Networks (VPN)
 - Differentiated Internet access

Changing Business Models

- Bandwidth-on-demand
- Contractually mandated service levels
- Customer self-provisioning and self-management
- Operations streamlining: more services with less staff

Trends in Communications: New Requirements

- Requires automated and dynamic provisioning of
 - Ports
 - Existing connections used for dynamic creation of new virtual circuits
 - Virtually plug in and connect Joe and Fred
 - They instantly know about each other
 - Hardware provisioning delegated to the home or office
 - Flexible capacity management
 - Wavelength Resources
 - Allocation
 - Provisioning
 - Priority policies
- Requires predictable and dynamic service levels
 - Allows service providers to offer differentiated services
 - Allows diverse, multi-level service agreements
 - From guaranteed, fixed bandwidth ... to excess capacity use ... to ...
 - Requires control of both implicit and explicit service levels

Trends in Communications New Requirements (2)

- Require software-centric system architectures
- Need to assimilate new technologies
 - Migrate quickly and easily to that new cool, fast hardware
- Reduce time-to-market for new products
- Increase product innovations
- Allow systems to become policy driven
 - QoS, load balancing, routing, backup, security, etc.
- Communications has come to the door of real-time
 - Market leaders will set themselves apart by the timeliness of how they allocate bandwidth and move data

CORBA in Network Management

CORBA and Network Management (1)

- Telecom early use of Simple Network Management Protocol (SNMP)
 - Management Information Base (MIB)
 - Common Management Information Protocol (CMIP)
 - Common Management Information System Element (CMISE)
 - Was industry standard

Problems included

- No location transparency
- Poor portability/interoperability
- Products are cost prohibitive (developer and run-time)
- CORBA was a better alternative

CORBA and Network Management (2)

- Was there a natural progression from CMIP to IDL?
- The CMIP guidelines for Definition of Managed Objects (GDMO) could be abstracted at either high or low levels
 - Depends on the size and requirements of the applications
- CORBA is the emerging industry standard for Telecom Network Management
 - Cost effective
 - Well educated culture (tools, doc, available engineers)
 - Good fit to future technologies (ATM, IP applications)
- IDL provides a type safe and understandable interface to customers

Challenges in Building Optical Switches

Challenges in Building Optical Switches

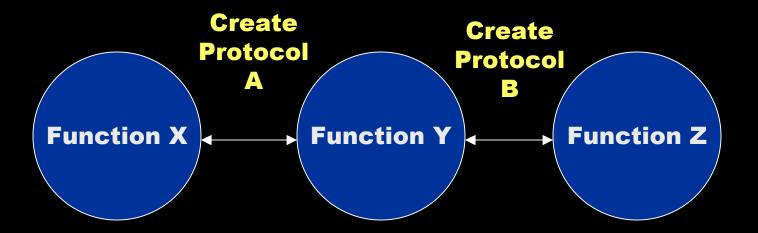
Integrating Legacy Technologies

- Integrate heterogeneous hardware
 - Use custom transport technologies
 - New hardware talks to old hardware
- Integrate heterogeneous operating systems
 - Universal model of thread priority
 - New O/S's interoperate with old O/S's
- Integrate heterogeneous programming languages
 - ❖ C, C++, Java, ...
 - Latest languages talking to old languages

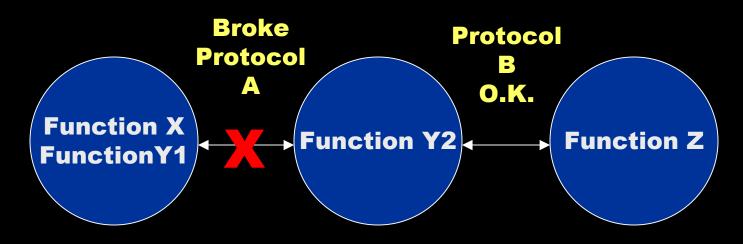
Challenges in Building Optical Switches (2)

Flexibility vs. Performance Tug-of-war

- Optical switches must be really fast
 - Low latency + high bandwidth
 - Quick, easy solution is to make them dumb
 - Hardware centric, disposable software
 - Software functionality must play catch-up
- But flexibility+speed will win in the long run
 - Better address business needs of service providers
 - Dramatically better time-to-market for new hardware innovations
 - New product introductions can be software-only



Using Real-Time CORBA in Optical Switches



Understanding CORBA Flexibility

Oops ...

Understanding CORBA Flexibility (2)

- Think of X, Y and Z as relocatable, distributed objects
- Therefore these objects can reside anywhere on your network
 - This includes a single process space (collocation)
 - Very fast (70 nsec for a virtual function call)
 - Can be used as a test bed
 - Same host or different host
 - Same language or different different language
- Applications don't care where the objects reside they make calls to the client side API
 - Just like a C, C++ or Java program

Real-time CORBA

- Real-time CORBA adds control of time
- Priority banded connections
 - Reduce/bound priority inversions
 - Priorities are respected on both sides of the remote call
- Priority insures latency requirements which might be separate from bandwidth considerations
 - High priority, low latency, moderate bandwidth
 - Moderate-to-low priority, high latency, high bandwidth
- RTCORBA priorities map to RTOS priorities
 - Can be altered via custom mapping function
- End-to-End predictability

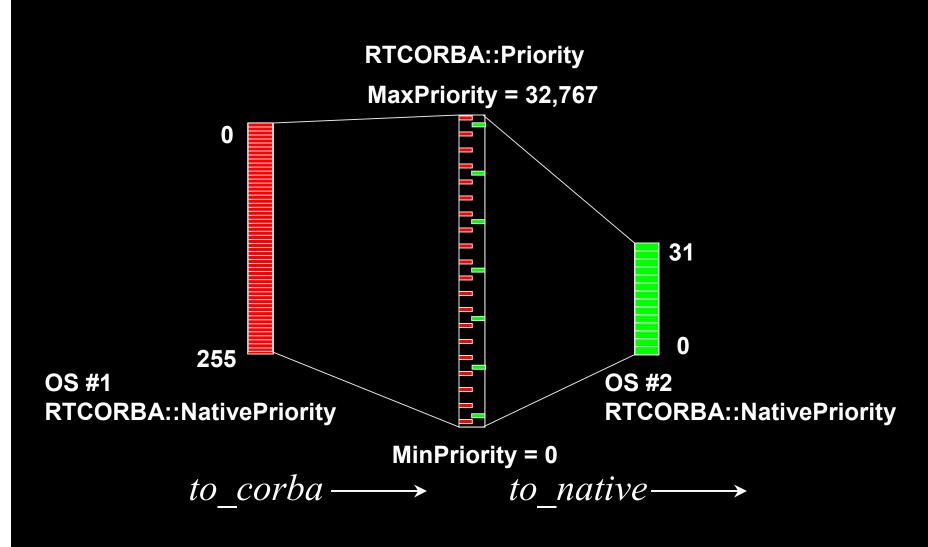
Using Real-Time CORBA in Optical Switches

Real-time ORBs can provide both:

- Real-Time CORBA = Performance + Flexibility
- Unparalleled flexibility
- Low latency and high throughput (some RT ORBs)

New hardware doesn't have to mean a rebuild

- Change backplanes/buses without changing software
 - ❖ VME PCI USB Switched Fabric …
- Allow switch to extend over non-backplane technologies
 - ATM
 - Ethernet (10Mb, 100Mb, 1Gb, 10Gb, ...)
 - Fibre Channel
 - ❖ IEEE 1394
 - **...**



Using Real-Time CORBA in Optical Switches (2)

- Plug in a custom transport into the RT ORB
 - Only a few engineers need understand the transport details
- RT CORBA application code doesn't change to use new transport

Integrate Operating Systems RT CORBA Priority Mapping

Real-time ORB's allow for better optical switches

- Faster
- More flexible
- Extensible
- More easily adapted to new hardware
- Better leveraging of legacy technologies

Contact information:

- http://www.ois.com
- chuck.abbott@ois.com
- **-** 703-295-6500

End of Presentation