

A Plug-in Transport with Dissimilar ORBs and a Connectionless Network

Nathan Scandella

OMG Embedded Object-Based Workshop

19 January, 2001 Santa Clara, CA

- Introduction to DARPA/Air Force Project
- Design Motivators
 - system architecture
 - description of our transport
- CORBA Solution
- How to Plug In a Transport
- Lessons Learned
 - recommendations for RT CORBA

WSOA Project Concept

Commercial Satellite / GBS

C2 = Command & Control (e.g. AWACS)

Honeywell

BBN Technologies a part of verizon

BOEING

• Previews Updated Mission Enroute

- Case Study DARPA/Air Force sponsored flight demonstration project
- Weapons System Open Architecture (WSOA)
- Standards-based middleware desired
- Secure tactical datalink available between aircraft

punch line:

- TAO and ORBexpress real-time ORBs chosen
- Datalink transport plugged-in to ORBs

WSOA Software Architecture

WSOA Software Architecture

Link 16 Transport

Mil-Std-6016 Tactical Digital Information Link -Joint Tactical Information Distribution System (JTIDS)

- Time Division Multiple Access (TDMA)
- Nodeless
- Message and Transmission Encryption
- Frequency Hopping
- UHF, L_X Band
- Line of Sight

Honeywell

- Secure RF broadcast network
 - no connections!
- Reliable delivery, error detection and correction
- Most messages are content specific, except JTIDS free text message
 - this message used to transmit secure digital voice data
 - compressed imagery not tolerant of transmission errors
- Free text (~byte stream) effective data rate < 16kbps
- "Transport" is really a network application
 - GIOP could be tunneled thru JTIDS messages, though

Free Text Message Transport Layer

- message sequence number
- subaddress
 - ala TCP "port"
 - currently, no host identifier
- message status
 - start, during, end
- message byte count
- overhead
 - approx. 4 bytes per GIOP message + 2 bytes for each 54 bytes of GIOP message length
- compatible with other free text data applications

"link16://00041:12"

Aside: Why Else to Replace TCP/IP?

TCP/IP Feature	Protocol or Mechanism	Drawbacks and Limitations
Connection-Oriented		Unsuitable, or at least inefficient, for use in multi-point communication.
Reliable, Ordered	Acknowledgements	Unsuitable or inefficient for simplex, half duplex, or multipoint communication media. Inefficient for high-latency communication connections.
	Retransmission after time-out	Ignores limited time value of some data, e.g. audio, video, track updates
	Source quenching flow control	Unbounded blocking of source may result in unbounded priority inversions
Stream-Oriented		Limits preemption to account for priority

Honeywell

BBN Technologies a part of verizon

From OIS, CORBA Programming with ORBexpress in Ada 95

CORBA Implementation - Inline Bridge

Honeywell

CORBA Implementation - Inline Bridge

CORBA Implementation - Transport

 Pluggable transport protocol between TAO and ORBexpress RT Native ORB Plug-in Blend GIOP 1

Resulting implementation specializes several ORB*express* APIs and plugs into the ORB network

- Each ORB has unique transport interface
- Future CORBA specification should standardize this

From OIS, CORBA Programming with ORBexpress in Ada 95

Honeywell

CORBA Implementation - Inline Bridge

Which Network API?

- ORB Pluggable Protocol
 - CORBA recommended method for inline bridging
 - in CORBA spec in the future?
 - uses GIOP
 - clean integration into ORB
 - multiple transports OK
 - simple high level API for ORBexpressRT
 - experience with this method

- Socket API
 - standard network interface for other network apps
 - uses IIOP (GIOP over ~TCP)
 - requires namespace resolution for using real IPC sockets AND socket emulation
 - may have complex system calls to emulate true POSIX sockets
 - experience with this method

Requirement

Comments

- Wrap Link-16 addressing info into Connection-oriented transport messages. Reliable Transport includes orderly delivery.
- Stream-based •
 - Notification of connection-loss •
- Implemented by free text transport layer.
- Asynchronous messaging used to avoid timeouts.
- Connection-initiation model
- Dummy connect() call implemented. IOR strings used.

From OIS, CORBA Programming with ORBexpress in Ada 95

BBN Technologies verizon a part of

Plug-in Transport Framework

classes to implement

from Kuhns et al., *The Design and Performance of a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware*

Honeywell

Plug-in Transport Framework

TAO Server Class Diagram

from Kuhns et al., *The Design and Performance of a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware*

Existing Command and Control Architecture

Mission Computer Program

WSOA Server Delegate Architecture

Detailed WSOA CORBA Architecture

WSOA Server Application

Honeywell

BBN Technologies

Mission Computer Program

BOEING

Concurrency Model - C2 (Server)

Asynchronous Callback AMI Programming Model

Honeywell

Washington UNIVERSITY IN ST-LOUIS

- Full performance data and results available late 2001
 - ^o two way interoperability verified
- Separate transport mapping for each ORB
 - my OE mapping layer:
 ~ 500 SLOC so far
- _IOP Profiles not standard
 - ^o TAO flexible enough to match
 - recommend standardizing on OE's
 UIOP profile

Honeywell

- Simple IDL interfaces work well
 - don't push on all sides of the envelope at once!

- A RT CORBA standard for plug-in transports would be extremely valuable
- Pluggable Protocol Services, too?
 - we built our own COS Name Service wrapper

Honeywell

