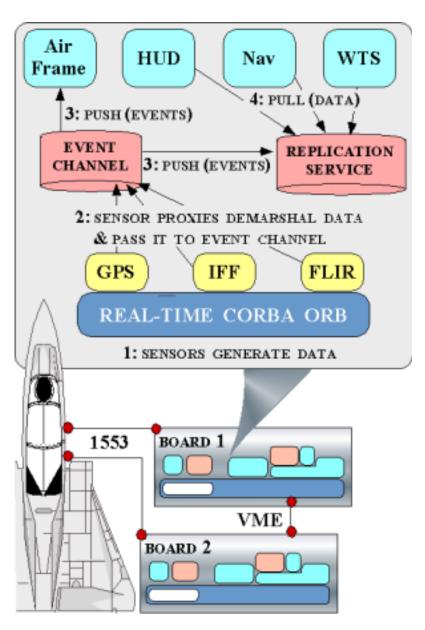
# Extending Real-Time CORBA for Next-Generation Distributed Real-Time Mission-Critical Systems

### Christopher D. Gill and Ron K. Cytron

{cdgill,cytron}@cs.wustl.edu


www.cs.wustl.edu/~cdgill/omgrtws01.{ppt,pdf}
Center for Distributed Object Computing
Department of Computer Science
Washington University, St. Louis, MO



Wednesday, June 6, 2001

Work supported by Boeing, DARPA, and AFRL

### **Motivating Application**



### **Boeing Bold Stroke Middleware Infrastructure Platform**

- Used on CRAD, IRAD, and production systems
- Research conduit to production systems

#### **Operations Well Defined**

- Harmonic rates, bounded execution times
- Need criticality isolation assurances

#### **Event Mediated Middleware Solution**

- RT Enhanced TAO Event Channel
- Precedence DAG, scheduler per endsystem

#### **Previous Generation Systems**

- Fixed environment, static modes
- Used cyclic exec or RMS scheduling

#### **Next Generation Systems**

- Highly variable environment
- Large # of system states, dynamic modes
- Need dynamic & adaptive resource mgmt
- Need coordinated closed-loop QoS control
  - -Across time-scales, system layers
  - -E.g., ACE+TAO, QuO, RT-ARM

### Limitations With Existing Approaches

#### APPLICATIONS

DOMAIN-SPECIFIC SERVICES

COMMON MIDDLEWARE SERVICES

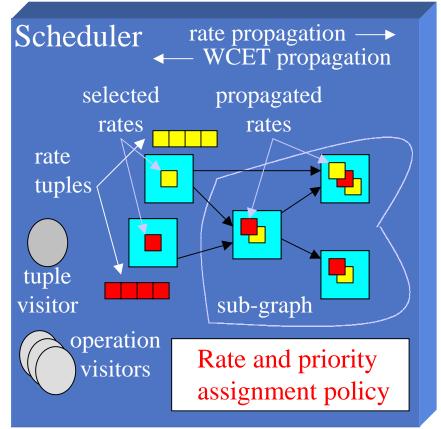
DISTRIBUTION MIDDLEWARE

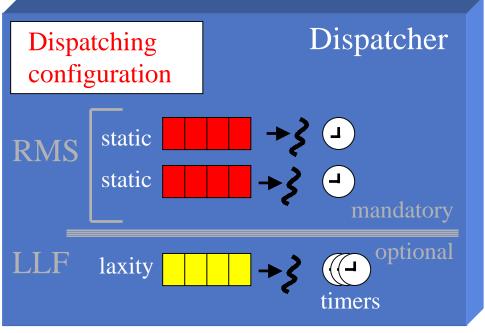
INFRASTRUCTURE MIDDLEWARE

OPERATING SYSTEMS & PROTOCOLS

HARDWARE

Historically, distributed and embedded RT systems built directly atop hardware/OS


• Tedious, error-prone, & costly over lifecycles COTS middleware (e.g., CORBA) increasingly used to lower cost/time in real-world systems:


| Domain                       | Company                                     |
|------------------------------|---------------------------------------------|
| Avionics mission computing   | Boeing, Raytheon                            |
| Mass storage devices         | SUTMYN, StorTek                             |
| Medical Information Systems  | Siemens, GE                                 |
| Satellite Control            | LMCO COMSAT                                 |
| Telecommunications           | Motorola, Lucent, Nortel,<br>Cisco, Siemens |
| Missile & Radar Systems      | LMCO Sanders, Raytheon                      |
| Steel Manufacturing          | Siemens ATD                                 |
| Beverage Bottling Automation | Krones AG                                   |

However, current COTS middleware lacks hooks for key domain-specific features, *e.g.*:

- Optimized integration w/ higher level managers
- Hybrid static-dynamic scheduling strategies
- Composition of scheduling strategies & dispatching mechanisms from primitive elements
- Adaptive domain-specific & run-time optimizations

# Research Approach: the *Kokyu* Flexible Middleware Scheduling/Dispatching Framework





### **Application specifies** *characteristics*

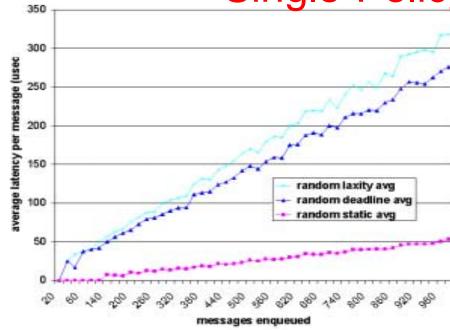
• e.g., criticality, periods, dependencies

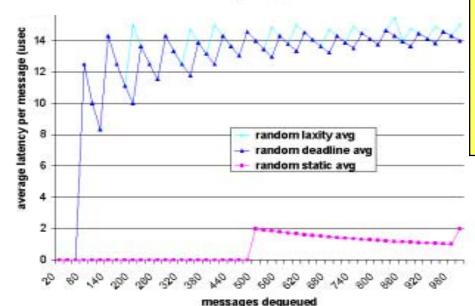
### Dispatcher is (re)configurable

- Multiple priority lanes
- Queue, thread, timers per lane
- Starts repetitive timers once
- Looks up lane on each arrival

### Scheduler assigns *rates & priorities* per topology, scheduling policy

Defines necessary dispatch configuration


### Implicit projection


 Of specific scheduling policy into generic dispatch infrastructure

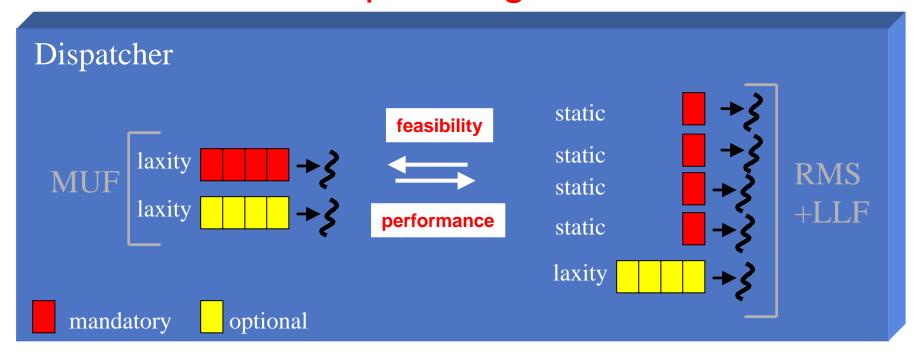
### Tailoring Scheduling Heuristic to Domain/State

| Technical<br>Challenge                             | Research<br>Approach                                                  | Research<br>Impact                                                     |
|----------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| No one strategy optimal for every resource "niche" | Dispatching composed from primitive elements                          | Supports tailored "fit" of scheduling/dispatching                      |
| Co-scheduling resource managers and application    | Decision lattice joining a priori analysis with empirical measurement | Allows run-time reflective and adaptive policy selection (in-progress) |

Problem: Limitations with Existing Single-Policy Approaches



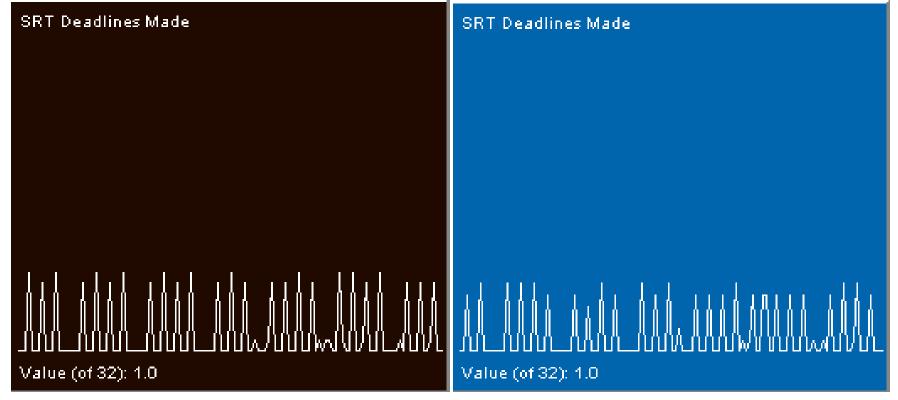



### Optimal Heuristic Depends on Application-Specific Details:

• Example: RMS+LLF vs. MUF when rates are harmonic vs. non-harmonic —Feasibility vs. performance

### Performance of Three Canonical Queue Ordering Disciplines

- Simple test with queue classes
- Randomly ordered enqueues
- Static → fixed sub-priority
- Deadline → time to deadline
- Laxity → time to deadline WCET
- Enqueue overhead worse with > load
- Overhead: static << deadline < laxity</li>


# Solution: Composition of Scheduling Heuristics from Dispatching Primitives



### Gives Fine Grain Control over Feasibility / Performance Trade-Off

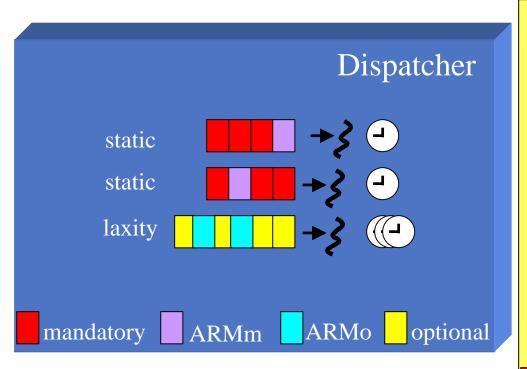
- With non-harmonic rates MUF may be feasible but RMS+LLF infeasible
- However MUF dispatching overhead is expected to be worse
  - -Only 2 threads, but queue management/contention likely dominates
  - -mandatory 1 laxity queue, optional 1 laxity queue
- RMS+LLF performance is expected to be better, if feasible
  - -5 threads but greater fan-out of critical operations = lower contention
  - -Mandatory 4 static queues, optional 1 laxity queue

# Empirical Results: Tailored Policy Improves Deadline Success of Optional Operations



**RMS+LLF Optional Operations** 

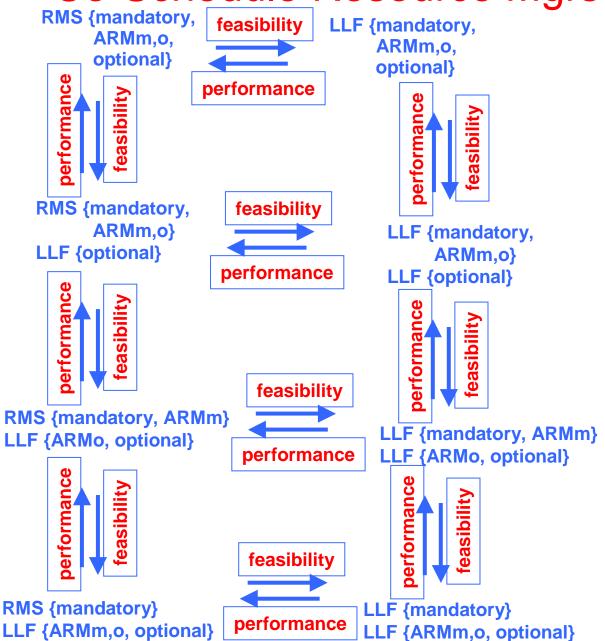
**MUF Optional Operations** 


### **ASFD: Expectations from Theory and Measurement Confirmed**

- Some improvement of RMS+LLF over MUF in practice
  - -Made more optional operation deadlines under same overload conditions
- Lower overhead/queue & greater fan-out across queues in RMS+LLF

### Co-Scheduling Resource Managers & Application

| Technical<br>Challenge                            | Research<br>Approach                                                  | Research<br>Impact                                                     |
|---------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| No one strategy optimal for each resource "niche" | Dispatching composed from primitive elements                          | Supports tailored "fit" of scheduling/dispatching                      |
| Co-scheduling resource managers and application   | Decision lattice joining a priori analysis with empirical measurement | Allows run-time reflective and adaptive policy selection (in-progress) |


# Problem: Limitations with Existing Approaches to Co-Scheduling ARM and Application



### Previously ad hoc

- Scheduled entire RT-ARM in a single priority lane
- However, RT-ARM is also divisible into mandatory and optional sets
  - -Mandatory: could we adapt?
  - -Optional: perform adaptation
- Key: mandatory + ARMm feasible
  - -Or, no assurance of coherency
- Natural criticality partition over the set of all operations
  - Application mandatory
  - **–ARM** mandatory
  - -ARM optional
  - Application optional
- Given all this, we can do better

# Solution: Use Empirical & *A Priori* Information to Co-Schedule Resource Mgrs & Applications



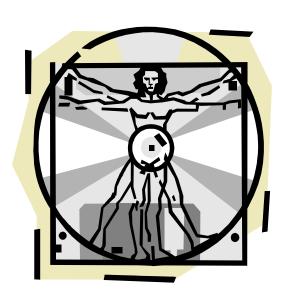
Preserve Invariant, but
Optimize Performance
• Criticality: values partition
ops for deadline isolation
• Definition: system
schedulable if highest

partition feasible

Invariant: no lower

**Decision Lattice** 

partition can make a higher one infeasible
• Key: invariant strength –e.g., 1:1 criticality to priority over-constrains –Want safe optimizations


# (experiments in progress)A rich optimization space: topological? geometric?

- Spans criticality → prio/queue mappings
- *E.g.,* over 4 partitions: {mandatory},{ARMm},

{ARMo},{optional}

### **Concluding Remarks**

The Kokyu research project provides solutions to key challenges for optimized and adaptive QoS support in middleware



#### **Empirical Evaluation**

- Validates adaptive/hybrid scheduling approach
- Quantifies costs/benefits of discrete alternatives
- Powerful when combined with theoretical view
  - -"Mining" technique for problems & properties

#### **Composable Dispatching**

 Enables domain-specific optimizations, especially when design decisions are aided by empirical data

#### **Heuristic Space Experiments**

- Will offer a quantitative blueprint for coscheduling RT-ARM with OFP applications
- Will demonstrate a general co-scheduling technique where theory & empirical studies meet

#### **Open-Source Code**

- All software described here that is uniquely a part of my research will be made available in the ACE\_wrappers distribution
  - -First within TAO, then as a distinct *Kokyu* directory (summer 2001)