Applying CORBA in a Contemporary Embedded Military Combat System
(A Submarine Combat System Perspective)

OMG's Second Workshop on Real-time And Embedded Distributed Object Computing
June 4-7, 2001

Louis DiPalma / Robert Kelly
Raytheon Electronic Systems
Naval & Maritime Integrated Systems
Warfighter Information Center Subsurface Systems Engineering Department
401.842.5592 / 401.842.2853
Louis_P_DiPalma@res.raytheon.com/Robert_E_Kelly--Jr@res.raytheon.com
The US Navy has **fully and openly embraced** CORBA. CORBA has been endorsed throughout the entire US Navy Submarine fleet. This infusion of CORBA is not limited to **future system upgrades**, but also includes several **potential backfit platforms**.

CORBA has been designated as the **technology of choice for integrating** the many subsystems onboard the submarine platform. CORBA is being employed on virtually all the **inter-subsystem interfaces** on the New Attack (Virginia) Class Submarine.

<table>
<thead>
<tr>
<th>Schedule</th>
<th>1/00</th>
<th>08/01</th>
<th>/04</th>
<th>/07</th>
</tr>
</thead>
<tbody>
<tr>
<td>- CCS Mk 2 Block 1C Sell-Off</td>
<td>▼</td>
<td>▼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Virginia Combat Control Sell-Off</td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>- Virginia Dockside Trials</td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>- Virginia Initial Operational Capability (IOC)</td>
<td></td>
<td></td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>
Non-Propulsion Electronic Subsystem Interfaces

All Subsystems Are Physically Connected to the Architecture ATM LAN. Logical Connections (Established at IPL) Provide Data Pathways Among Subsystems.
CORBA Data Organization

• Data shared between systems was organized into CORBA and Non-CORBA Groups

• CORBA data was grouped by like objects
 – Orientation is shared data v.s. supplier-consumer view
 – Most involved subsystem assigned as lead to define interface
 – Interface designed as superset of all user needs
 – Modules logically organized within an interface

• Interfaces employ Push/Push event channel
 – Supports shared data view with multiple suppliers and consumers
 – Naval Undersea Warfare Center OMG CORBA compliant implementation event channel developed due to lack of COTS

• Redundant CORBA Name Servers custom designed and implemented for availability
 – Name Servers monitor each other as hot spares
OMG WORKSHOP ON REAL-TIME AND EMBEDDED DISTRIBUTED OBJECT COMPUTING
CC Middleware Was Influenced by Many Factors

- Virginia CC development was based on extensive reuse
- Weapon Interfaces Have Unique Demands
 - real-time constraints
 - resource limitations and resource requirements
- Existing In-house middleware for distributed systems (Realtime Distributed Environment for POSIX (RADEX))
- Compatibility with other SoS subsystems, particularly Architecture subsystem
- DII COE Components
- Maturity level of CORBA products and standards when the system architecture was established
- Benefits of CORBA in a heterogeneous distributed environment (anticipating ever-present interface issues)
Naval and Maritime Integrated Systems

Infrastructure Profile

X Windows, CDE, Application remote launch, DII-COE

RADEX Registration & Control Flow, DII-COE, Network Node Manager

CORBA Data Servers, RADEX Data Tables, RADEX Messaging, DII-COE Data Services

HP-UX, SNMP, NTP, DII-COE, TCP/IP, UDP, LANE

HP Processors, FORE ATM, Q-70 Consoles, VME, FWD SCSI
Virginia FCS Software Profile

- CORBA External Interfaces
- RADEX Internal Data Services & Run-time Management

“Real organizations have to use multiple middlewares,” Andrew Watson
Lessons Learned

• ORB Selection
• Common to all embedded COTS . . .
 – Plan vendor support, monitor vendor directions, plan version migrations
 – Not all ORBs or ORB vendors are equal
 – Not all ORBs are equally inter-operable
• Due diligence required in crafting IDL
 – Per object methods (accessor functions)
 – Aggregate (batch) methods for performance efficiency
• CORBA Services, especially Event and Naming Service, are critical to the systems we build
 – Events act primarily as notifications to minimize throughput
• Size of executables are a concern
Lessons Learned (cont.)

• Develop robust interface early with initialization, error recovery leading application integration
• Create auxiliary functions once and share across classes
• Learning Curve - Training and Mentoring needs
Goal System Model for Combat System

- Common Shared Data Exchange Mechanisms
- Common Coordinated Run-Time Environment
- Common But Architecturally Isolated Tactical Control and Weapon Control Functions

OMG WORKSHOP ON REAL-TIME And EMBEDDED DISTRIBUTED OBJECT COMPUTING
Next Steps

- Mk 2 Combat Control System Open System Enhancement
 ECP 004 takes the next evolutionary step
 - Migrating to more current ORB, selected within constraints of system of systems
- Long term goal is to move to common middleware for CC internal and external communications
- RT-CORBA
 - Real-time performance
 - QoS guarantees
- Fault Tolerance
 - Common COTS based solution/ dynamic reconfiguration
 - Avoid re-implementing unique system solutions
 - Investigating use of FT-CORBA
Contact Information

Louis P. DiPalma
Louis_P_DiPalma@res.raytheon.com
401.842.5592

Robert E Kelly
Robert_E_Kelly--Jr@res.raytheon.com
401.842.2853

Raytheon Electronic Systems Company
Naval & Maritime Integrated Systems
SubSurface Warfighter Information Center
Systems Engineering Department
Mail Stop 142
1847 West Main Road
Portsmouth, RI 02871