

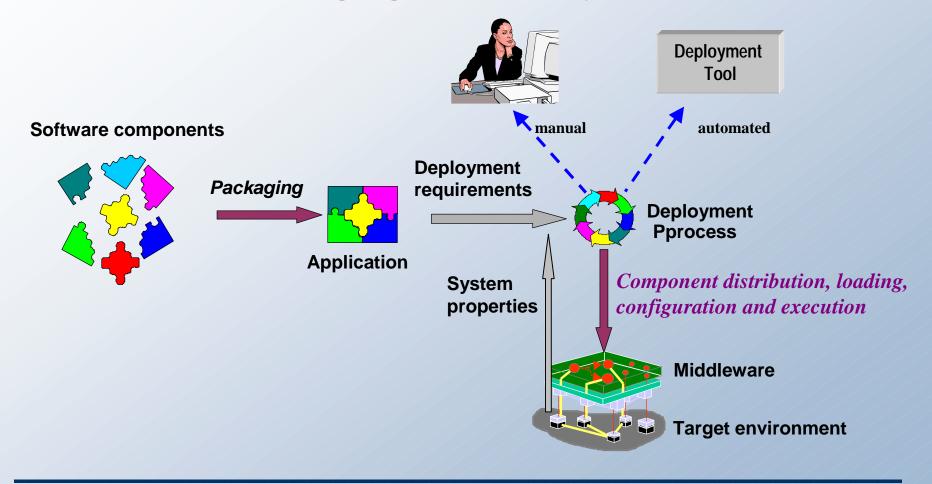
Fraunhofer

Institute for Open Communication Systems

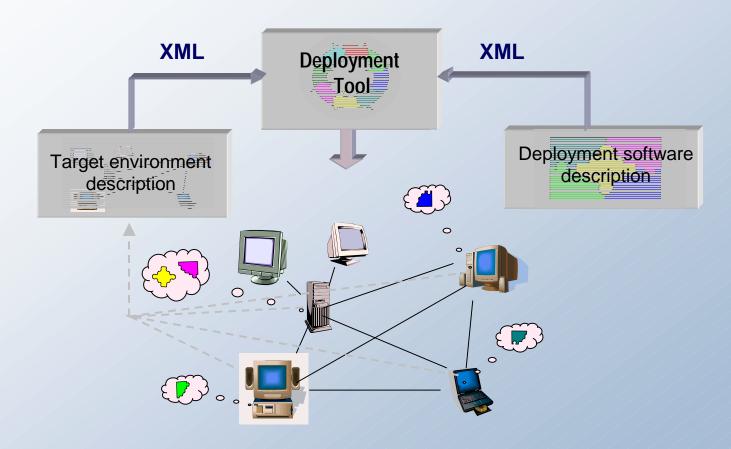
## UML Notation for an Automated Deployment Process

Julia Reznik, Marc Born

GMD Fokus {reznik,born} @fokus.fhg.de


### **Agenda**

- Motivation
- Packaging and Deployment
- Model Driven Solution in order to support the automation of software deployment process
  - UML Notation for software components
  - CCM: Packaging and Deployment
  - automated Generation of CCM Deployment Description

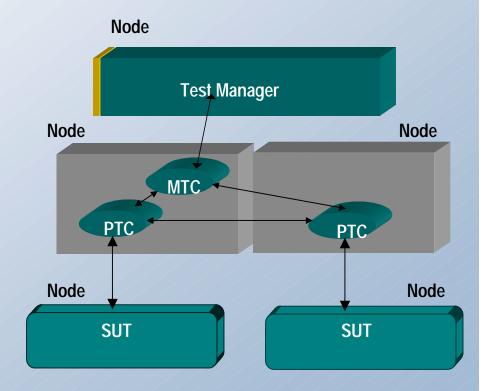

### **Motivation**

- Large network environments have moved to the center stage in the field of software deployment
- New tools are needed to automate the component-based software deployment life cycle in a distributed environment
- Deployment life cycle: wide range of deployment tasks:
  - Packaging, installation, update, reconfigure, adapt, remove

### **Packaging and Deployment**



### **Deployment Tool**




### **MDA Solution: Deployment Software Description**

- Bridges the gap between design and deployment phase of distributed applications
- Provides conventions for applying and specializing standard UML to the graphical deployment notation
- Bases on the the definitions of the XML DTDs used by the CORBA Components
- Can be realized with existing UML tools (e.g. Rational Rose)
- Provides automatic generation of XML descriptors with a UML tool

### **Test Service Example for distributed systems**

- Computational Object Types (COs):
  - TestManager
  - Main Test Component (MTC)
  - Parallel Test Component (PTC)
  - System Under Test (SUT)



### **UML Extension Mechanisms**

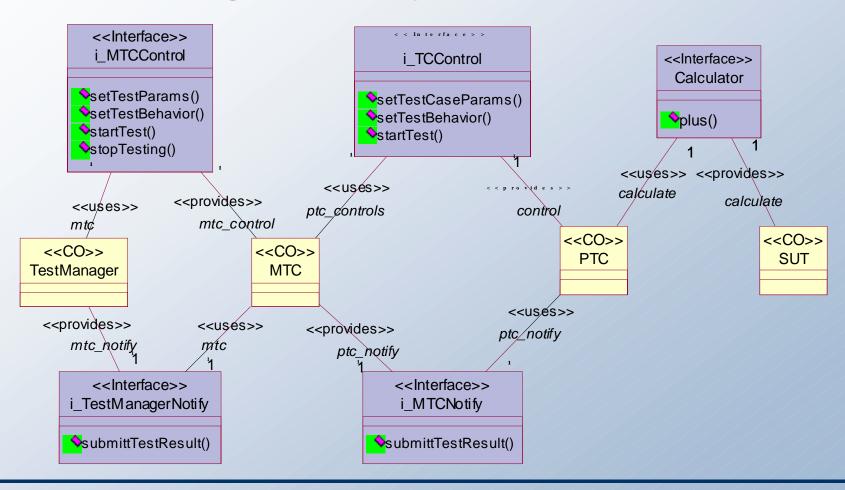
### Stereotypes:

- Sub-classification of an existing UML element
- The new element has its own special properties (expressed as tagged values), semantics and notation

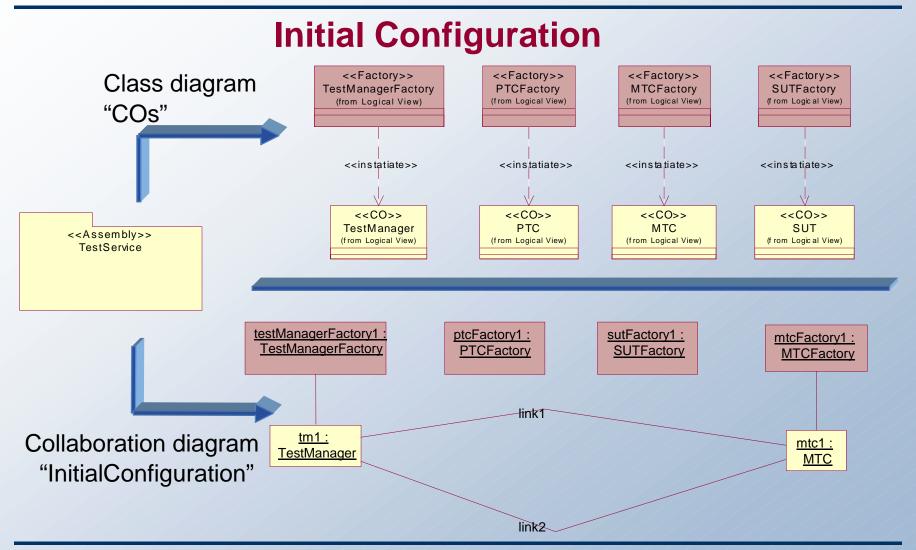
### Tagged Values:

 New information about model elements and presentation elements (new properties)

### Constraints:


Conditions and restrictions, that apply to model elements

### **Diagrams and Stereotypes**


- Class diagram : Computational Object Types (CO Types) and their interfaces
- Collaboration diagram: Initial configuration of COs and their factories
- Component diagram: implementation components
- Stereotypes:

| UML-Metamodel<br>element | Stereotype                                                                    |  |
|--------------------------|-------------------------------------------------------------------------------|--|
| Class                    | < <co>&gt;</co>                                                               |  |
| Class                    | < <factory>&gt;</factory>                                                     |  |
| Class                    | < <interface>&gt;</interface>                                                 |  |
| Component                | < <implementation>&gt;</implementation>                                       |  |
| Package                  | < <assembly>&gt;</assembly>                                                   |  |
| Association              | < <uses>&gt;</uses>                                                           |  |
| Association              | < <pre>&lt;<pre>&lt;<pre>&lt;<pre>&lt;<pre>&lt;</pre></pre></pre></pre></pre> |  |
| Dependency               | < <instantiate>&gt;</instantiate>                                             |  |

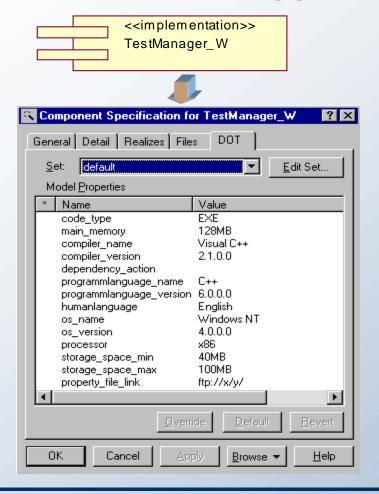
## Class diagram: CO Types and interfaces

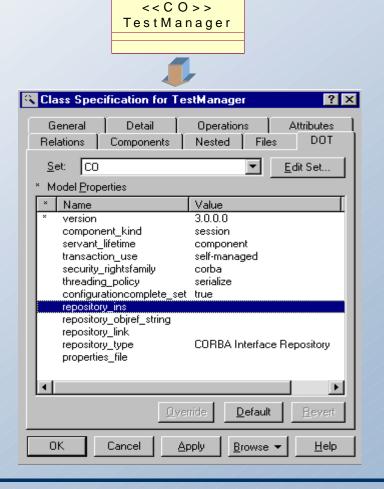






### Tagged Values (1)


- DCL specific keyword pairs: property name and value
- For stereotypes <<CO>> and <<Implementation>> tagged values are defined in the profile
- Source: CORBA Components Descriptors
  - Software Package
  - CORBA Component
  - Component Assembly




Fraunhofer Institute for Open Communication Systems

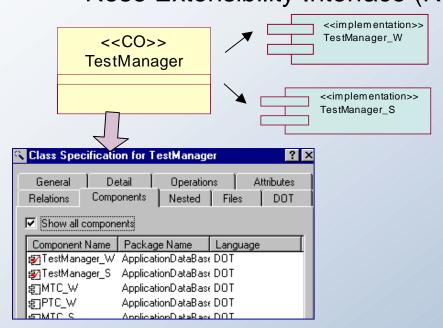
#### **UML Notation for an automated deployment process**

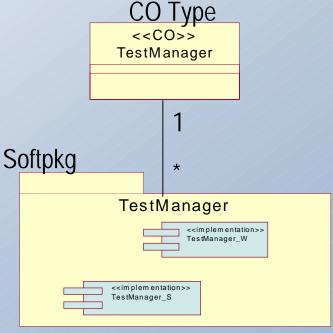
### **Tagged Values (2)**





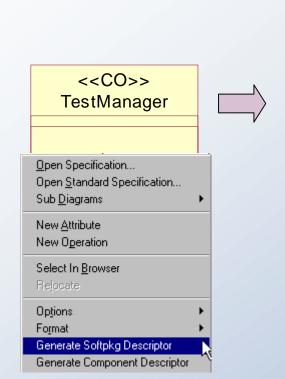
### **Constraints**

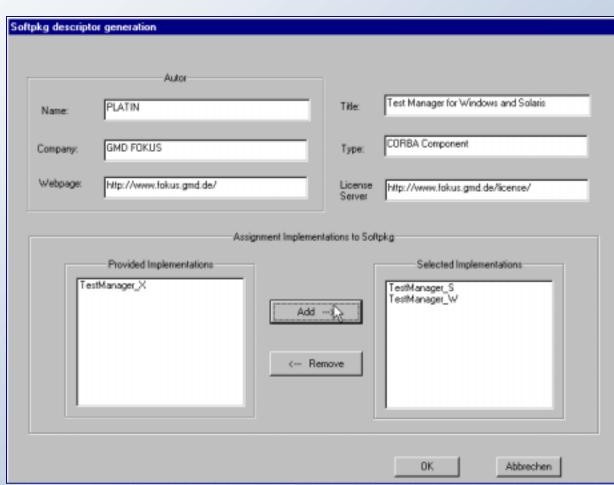

- <assembly>> must have two diagrams: "COs" and "InitialConfiguration" diagram
- a class diagram of <<assembly>> package contains only classes with <<CO>> and <<Factory>>
- Generalisation: all elements of the same stereotype (e.g. <<CO>>)
- Valid association stereotype combinations:


| From:                         | < <co>&gt;</co>                   | < <factory>&gt;</factory> | < <interface>&gt;</interface>                                                 |
|-------------------------------|-----------------------------------|---------------------------|-------------------------------------------------------------------------------|
| < <co>&gt;&gt;</co>           |                                   |                           | < <uses>&gt;</uses>                                                           |
|                               |                                   |                           | < <pre>&lt;<pre>&lt;<pre>&lt;<pre>&lt;<pre>&lt;</pre></pre></pre></pre></pre> |
| < <factory>&gt;</factory>     | < <instantiate>&gt;</instantiate> |                           |                                                                               |
| < <interface>&gt;</interface> |                                   |                           |                                                                               |

### Realization with UML tool Rational Rose

- Rational Rose provides
  - graphical support for UML


 automatic generation of XML-Descriptors using Rose Extensibility Interface (REI)





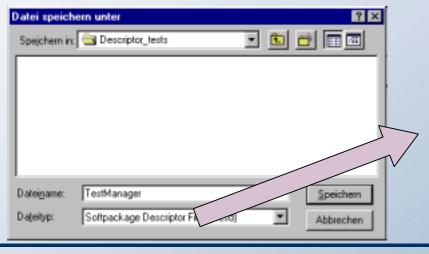



### **Generation of softpkg descriptor (1)**








Communication Systems

#### **UML Notation for an automated deployment process**

### Generation of Softpkg descriptor (2)

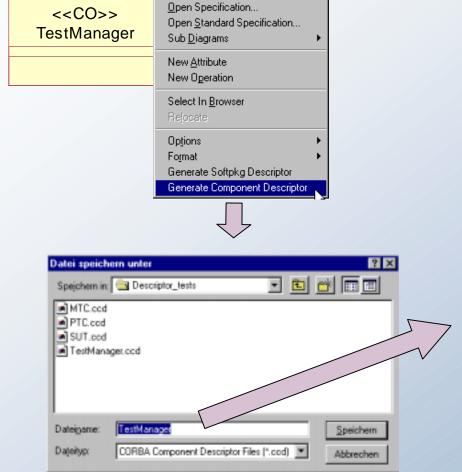






```
*IDOCTYPE softplay SYSTEM*softplay.dtd*>
<softplig name="TestManager">
        <idlid="IDL:M1/TestManager:1.0"/>
                  <company>GMD FOKUS</company>
                  <name>PLATIN
                  -webpage href="http://www.fokus.gmd.de/"/>
         </author≻
         license href="http://www.fokus.gmd.de/license/"/>
         <ttle>Test Manager for Windows and Solaris<ttle>
        <pkgtype>CORBA Component
        <implementation(d="DCE:TestManager_W">
                  <description>This is an implementation for Windows operation system 
                  descriptor>
                           <fli>fileinarchive> TestManager.ccd <flieinarchive>
                  </descriptor>
                  <mainmemory size="128MB">
                  <compiler name="Visual C++" version="2.1.0.0".>-
                  corgramminglanguage name="C++" version="6.0.0.0";>
                  <ps name="Windows NT" version="4.0.0.0">
                  cessorname="x86"/>
                  <stora ne>
                           *space min="40MB" max="100MB"/>
                  </a>/storage>
                  propertyfile≻
                           <fileinarchive name="TestManager_W.cpf"/>
                           <iink href="ftp://e/y*/>

    Jaroaert/file»

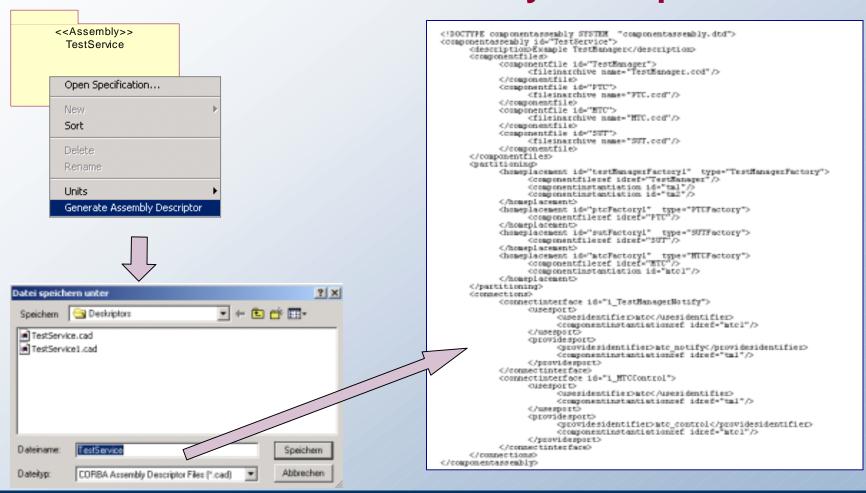

                  <code type="EXE">
                           <fli>inarchive name="TestManager_W.EXE"(></ti>
                  </code>
         -/implementation>
         -implementation.id="DCE:TestManager_S">
                  -description>This is an implementation for UNIX operation system 
                           <fileinarchive> TestManager.ccd <fileinarchive>
                  «Jdescriptor»
                  <code type="DLL">
                           <fli>file in archive name="TestManager_8.DLL"/>
                  </code>

Aimplementation>

 dsoffpkg-
```



### **Generation of Component descriptor**




```
2xml version="1.0" 2>
<IDOCTYPE corbacomponent SYSTEM "corbacomponent dtd">
«cortracomponent»
          <componentrepid repid="IDL:TestManager:1.0">
          <corb aversion > 3.0 </corb aversion >
          «component/ind»
                     <session</pre>
                                <servantlifetime="component">
                     q'session»
          <fcomponentkind>
          <transaction use="self-managed">>
          <security rightsfamile="corba"/>
          -threading policy="serialize"/>
          <repository type="CORBA interface Repository"/>
          "component/eatures name="TestManager" repid="IDL:TestManager">
                                          providesname="mtr_notify"
                                           repid="IDL:i_TestManagerNotify:1.0">
                                                      coperation name="submitTestResult">
                                                                            <transaction use="required"/>
                                                                            <requiredrights>
                                                                                       <ri>right name="submitt"></ri>
                                                                           <hequiredrights>
                                                                 doperation>
                                                     </a>/operationpolicies>
                                91505
                                           usesname="mtc"
                                           repid="IDL:i_MTCControl:1.0".>-
                     qiports>
          -rcomponentfeatures-
          <interface name="1_TestManagerNotify" repid="IDL:i_TestManagerNotify:1.0">
                                <aperation name="submitTestResult">
                                           <transaction use="required"/>
                                           <reguiredrights>
                                                      <ri>right name="submit"/></ri>
                                           </operation>

<
          <iinterface>
<icorbacomponent>
```



### **Generation of Assembly descriptor**



### Conclusion

- Graphical support for automated deployment process
  - Specification of component-based software systems requirements
  - Specification of Initial Configuration of component instances
  - Automatic generation of XML-Descriptors for the Deployment process
- Under development:
  - Automatic generation of UML Deployment diagram from the XML
     Description of target environment

# Thank you!