Using UML to Construct a Model Driven Solution for Unified Access to Disparate Data

Randall M. Hauch

VP Development, Chief Architect – Metadata Management

OMG's Second Workshop on UML™ for Enterprise Applications: *Model Driven Solutions for the Enterprise*December 3-6, 2001

Overview

- Enterprise Information Metadata
 - The information integration problem
 - Information metadata and how its used for information access
- Two ways MetaMatrix uses UML
 - Presentation and diagramming
 - Foundation metamodel
- Lessons Learned

Integrating Enterprise Information

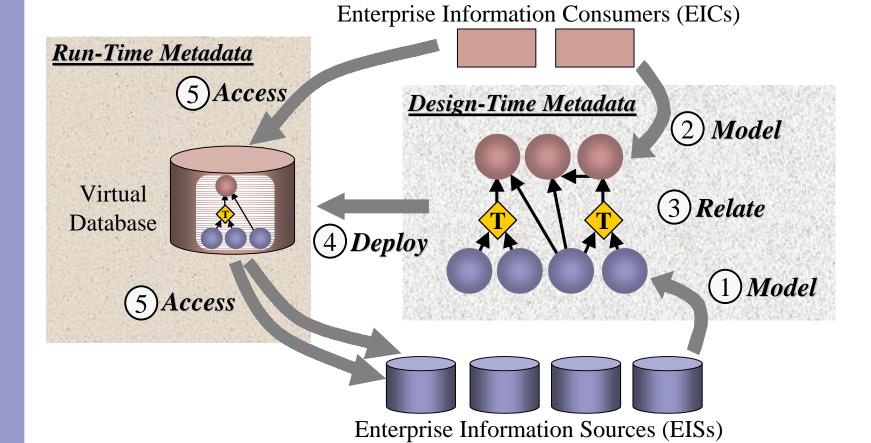
- The need:
 - Faster Time-To-Market
- The benefits:
 - Increase competitive position
 - Greater efficiency and reduced costs
- The approach:
 - Use existing information sources more effectively
 - Eliminate redundant information
 - Leverage new information sources in applications
 - Decouple applications from information sources
 - Don't copy or move information!

Solution is to Use Information Metadata

- Understand information sources
 - Where is information? Which platform?
 - What form is it in?
- Understand information consumers
 - How is information used?
 - In what form is it expected?
- Integrate information
 - Is similar information related?
 - Is information a combination or transformation of other information?

the **key** to managing data is managing **metadata**

Challenges of Information Metadata


- Want platform-specific metadata
 - Terminology & construction rules
 - Model the sources as naturally as possible
- Want platform-independent metadata
 - Explore and relate metadata from different platforms
 - Relate metadata through transformations and mappings
 - Create "virtual" sources that encapsulate multiple sources

These seemingly contradictory needs can be satisfied by applying MDA, MOF, and UML

MetaMatrix MDA

Model Driven Architecture:

Formal models define access functionality

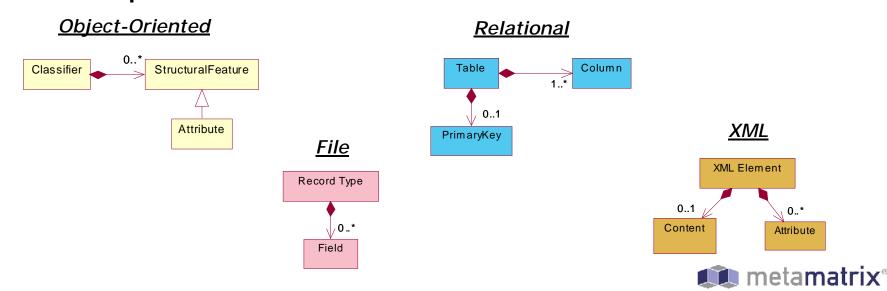
📖 metamatrix°

MetaMatrix MetaBaseTM

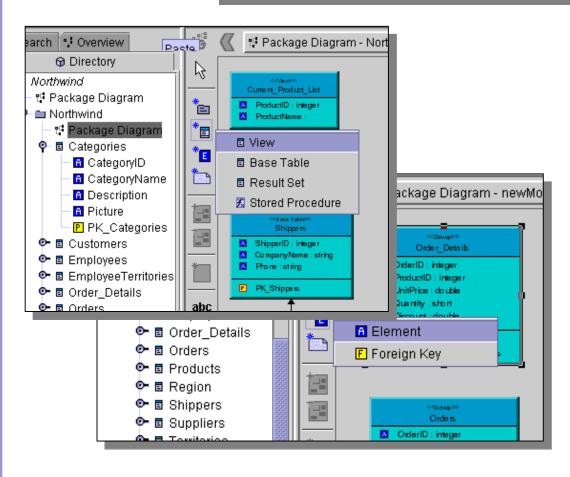
Design-Time Metadata Management

- MetaData ModelerTM
 - Visual tool to collect, model, and manage metadata for enterprise information sources
 - Stand-alone or used with MetaData Server TM
- MetaData ServerTM
 - Repository for metadata
 - Manage and version models
 - Facilitate enterprise management and sharing

MetaMatrix Information Integration Server

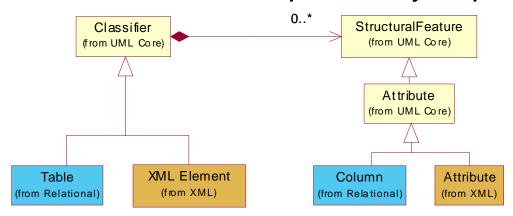

Runtime Metadata for Information Access

- Includes MetaBaseTM
- Information IntegrationTM Server
 - Scalable, fault-tolerant distributed server
 - Pluggable connectors for various information source platforms
 - Access disparate sources as if single source
- Connector Development KitTM (CDK)
 - Bench-test environment for custom connectors
- Console
 - Tool for remote administration
 - Monitor, manage, and configure distributed servers

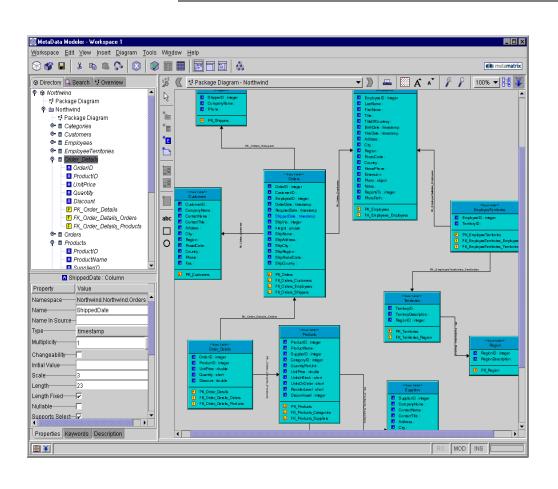


Platform-Specific Modeling

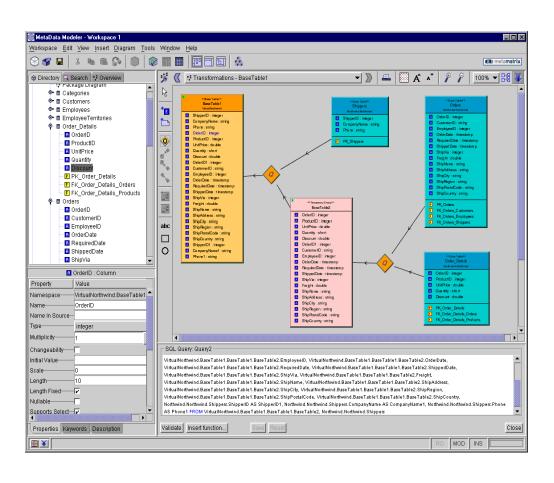
- Metamodels used to define platform metadata
 - Terminology & construction rules
 - Model the sources as naturally as possible
 - Based upon CWM metamodels (see Lessons)
- Samples:


Platform-Specific Modeling

- Metamodels
 dictate the
 constructs and
 instantiation rules
- Platform-specific terminology maintained and presented to user


Platform-Independent Modeling

- Supports multiple metamodels
 - Each defined with MOF
 - Each extend UML "plus" (see Lessons)
- Enables abstraction
 - UML used for presentation
 - Transformations defined independently of platform
- Samples:


Platform-Independent Modeling

- Shows structure with class and package diagrams
- Displays in a consistent way metadata from different platforms
- Uses and retains platform-specific terminology

Platform-Independent Modeling

- Shows structural transformations from one or more other classifiers
- Defines transformations with
 - Selects
 - Joins
 - Criteria
 - Functions
 - Unions
 - Etc.

Summary

- Enterprise Information Metadata
 - Differs from application metadata
 - Used to model, integrate, and access information sources
 - Needs both platform-independent and platform-specific metadata

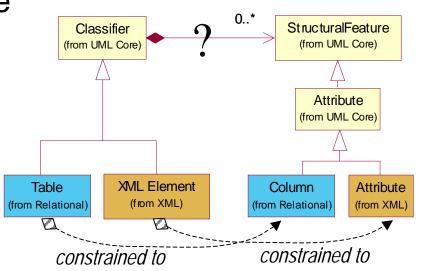
Formal modeling of metadata enables information access and integration

Summary (cont'd)

Metamodels

- Defined with MOF and UML
- Dictate constructs and rules for platformspecific metadata
- Can be treated in a platform-independent manner if extend UML
- Are data, enabling adaptive modeling or "metamodel-driven" modeling

Formal use of metamodels enables modeling of enterprise information metadata



Lessons

- UML and Information Metadata
 - Good for displaying structural features of data source metadata
 - Relationship between MOF and UML critical
 - Missing important constructs found in information metadata
 - Primary Keys
 - Indexes
- XMI
 - Powerful and flexible
 - Overuse of XMI extensions will reduce effectiveness of exchanging XMI for interoperability

Lessons (cont'd)

- CWM metamodels are good for interchange
- CWM metamodels limited for use in metamodeldriven solutions
 - Contain inconsistencies
 - Similar constructs don't extend the same UML construct
 - DTD form is not conducive
 - XMI would be better
 - Missing information
 - Well-formedness rules and constraints in the CWM metamodel specifications but not metamodel files

Randall M. Hauch VP, Chief Architect – Metadata Management rhauch@metamatrix.com

the **key** to managing data is managing **metadata**